Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
1.
Anal Chem ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102235

RESUMO

Glucuronidation, a crucial process in phase II metabolism, plays a vital role in the detoxification and elimination of endogenous substances and xenobiotics. A comprehensive and confident profiling of glucuronate-conjugated metabolites is imperative to understanding their roles in physiological and pathological processes. In this study, a chemical isotope labeling and dual-filtering strategy was developed for global profiling of glucuronide metabolites in biological samples. N,N-Dimethyl ethylenediamine (DMED-d0) and its deuterated counterpart DMED-d6 were used to label carboxylic acids through an amidation reaction. First, carboxyl-containing compounds were extracted based on a characteristic mass difference (Δm/z, 6.037 Da) observed in MS between light- and heavy-labeled metabolites (filter I). Subsequently, within the pool of carboxyl-containing compounds, glucuronides were identified using two pairs of diagnostic ions (m/z 247.1294/253.1665 and 229.1188/235.1559 for DMED-d0/DMED-d6-labeled glucuronides) originating from the fragmentation of the derivatized glucuronic acid group in MS/MS (filter II). Compared with non-derivatization, DEMD labeling significantly enhanced the detection sensitivity of glucuronides, as evidenced by a 3- to 55-fold decrease in limits of detection for representative standards. The strategy was applied to profiling glucuronide metabolites in urine samples from colorectal cancer (CRC) patients. A total of 685 features were screened as potential glucuronides, among which 181 were annotated, mainly including glucuronides derived from lipids, organic oxygen, and phenylpropanoids. Enzymatic biosynthesis was employed to accurately identify unknown glucuronides without standards, demonstrating the reliability of the dual-filtering strategy. Our strategy exhibits great potential for profiling the glucuronide metabolome with high coverage and confidence to reveal changes in CRC and other diseases.

2.
Med Res Rev ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119702

RESUMO

Oxidative DNA damage-related diseases, such as incurable inflammation, malignant tumors, and age-related disorders, present significant challenges in modern medicine due to their complex molecular mechanisms and limitations in identifying effective treatment targets. Recently, 8-oxoguanine DNA glycosylase 1 (OGG1) has emerged as a promising multifunctional therapeutic target for the treatment of these challenging diseases. In this review, we systematically summarize the multiple functions and mechanisms of OGG1, including pro-inflammatory, tumorigenic, and aging regulatory mechanisms. We also highlight the potential of OGG1 inhibitors and activators as potent therapeutic agents for the aforementioned life-limiting diseases. We conclude that OGG1 serves as a multifunctional hub; the inhibition of OGG1 may provide a novel approach for preventing and treating inflammation and cancer, and the activation of OGG1 could be a strategy for preventing age-related disorders. Furthermore, we provide an extensive overview of successful applications of OGG1 regulation in treating inflammatory, cancerous, and aging-related diseases. Finally, we discuss the current challenges and future directions of OGG1 as an emerging multifunctional therapeutic marker for the aforementioned challenging diseases. The aim of this review is to provide a robust reference for scientific researchers and clinical drug developers in the development of novel clinical targeted drugs for life-limiting diseases, especially for incurable inflammation, malignant tumors, and age-related disorders.

3.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39001013

RESUMO

Ischemic stroke is a type of brain dysfunction caused by pathological changes in the blood vessels of the brain which leads to brain tissue ischemia and hypoxia and ultimately results in cell necrosis. Without timely and effective treatment in the early time window, ischemic stroke can lead to long-term disability and even death. Therefore, rapid detection is crucial in patients with ischemic stroke. In this study, we developed a deep learning model based on fusion features extracted from electroencephalography (EEG) signals for the fast detection of ischemic stroke. Specifically, we recruited 20 ischemic stroke patients who underwent EEG examination during the acute phase of stroke and collected EEG signals from 19 adults with no history of stroke as a control group. Afterwards, we constructed correlation-weighted Phase Lag Index (cwPLI), a novel feature, to explore the synchronization information and functional connectivity between EEG channels. Moreover, the spatio-temporal information from functional connectivity and the nonlinear information from complexity were fused by combining the cwPLI matrix and Sample Entropy (SaEn) together to further improve the discriminative ability of the model. Finally, the novel MSE-VGG network was employed as a classifier to distinguish ischemic stroke from non-ischemic stroke data. Five-fold cross-validation experiments demonstrated that the proposed model possesses excellent performance, with accuracy, sensitivity, and specificity reaching 90.17%, 89.86%, and 90.44%, respectively. Experiments on time consumption verified that the proposed method is superior to other state-of-the-art examinations. This study contributes to the advancement of the rapid detection of ischemic stroke, shedding light on the untapped potential of EEG and demonstrating the efficacy of deep learning in ischemic stroke identification.


Assuntos
Aprendizado Profundo , Eletroencefalografia , AVC Isquêmico , Humanos , Eletroencefalografia/métodos , AVC Isquêmico/fisiopatologia , AVC Isquêmico/diagnóstico , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/diagnóstico , Processamento de Sinais Assistido por Computador , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/diagnóstico
4.
Artigo em Inglês | MEDLINE | ID: mdl-39031457

RESUMO

BACKGROUND AND AIMS: Whether the natural course of ulcerative colitis (UC) in mainland China is similar or different from that in Western countries is unknown, and data on it is limited. We aimed to provide a comprehensive description of the natural course of UC in China and compare it with Western UC patients. METHODS: Based on a prospective Chinese nationwide registry of consecutive patients with inflammatory bowel diseases, the medical treatments and natural history of UC were described in detail, including disease extension, surgery, and neoplasia. The Cox regression model was used to identify factors associated with poor outcomes. RESULTS: A total of 1081 UC patients were included with a median follow-up duration of 5.3 years. The overall cumulative exposure was 99.1% to 5-aminosalicylic acids, 52.1% to corticosteroids, 25.6% to immunomodulators, and 15.4% to biologics. Disease extent at diagnosis was proctitis in 26.9%, left-sided colitis in 34.8%, and extensive colitis in 38.3%. Of 667 patients with proctitis and left-sided colitis, 380 (57.0%) experienced disease extent progression. A total of 58 (5.4%) UC patients underwent colectomy, demonstrating cumulative proportions of surgery at 1, 5, and 10 years after diagnosis of 0.6%, 3.4%, and 8.2%, respectively. In addition, 23 (2.1%) UC patients were diagnosed with neoplasia, demonstrating cumulative proportions of neoplasia at 1, 5, and 10 years after diagnosis of 0.5%, 1.0%, and 3.5%, respectively. CONCLUSIONS: Chinese UC patients had similar cumulative proportions of exposure to IBD-specific treatments but a lower surgical rate than patients in Western countries, indicating a different natural course, and close monitoring needs for UC in China. However, these results must be confirmed in population-based studies because the hospital-based cohort in our study might lead to selection bias.

5.
Ann Biomed Eng ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829457

RESUMO

Interactions between cells are of fundamental importance in affecting cell function. In vivo, endothelial cells and islet cells are close to each other, which makes endothelial cells essential for islet cell development and maintenance of islet cell function. We used endothelial cells to construct 3D pseudo-islets, which demonstrated better glucose regulation and greater insulin secretion compared to conventional pseudo-islets in both in vivo and in vitro trials. However, the underlying mechanism of how endothelial cells promote beta cell function localized within islets is still unknown. We performed transcriptomic sequencing, differential gene analysis, and enrichment analysis on two types of pseudo-islets to show that endothelial cells can promote the function of internal beta cells in pseudo-islets through the BTC-EGFR-JAK/STAT signaling pathway. Min6 cells secreted additional BTC after co-culture of endothelial cells with MIN6 cells outside the body. After BTC knockout in vitro, we found that beta cells functioned differently: insulin secretion levels decreased significantly, while the expression of key proteins in the EGFR-mediated JAK/STAT signaling pathway simultaneously decreased, further confirming our results. Through our experiments, we elucidate the molecular mechanisms by which endothelial cells maintain islet function in vitro, which provides a theoretical basis for the construction of pseudo-islets and islet cell transplants for the treatment of diabetes mellitus.

6.
Adv Sci (Weinh) ; : e2400149, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898748

RESUMO

The activation of cyclic GMP-AMP (cGAMP) synthase (cGAS) and its adaptor, stimulator of interferon genes (STING), is known to reprogram the immunosuppressive tumor microenvironment for promoting antitumor immunity. To enhance the efficiency of cGAS-STING pathway activation, macrophage-selective uptake, and programmable cytosolic release are crucial for the delivery of STING agonists. However, existing polymer- or lipid-based delivery systems encounter difficulty in integrating multiple functions meanwhile maintaining precise control and simple procedures. Herein, inspired by cGAS being a natural DNA sensor, a modularized DNA nanodevice agonist (DNDA) is designed that enable macrophage-selective uptake and programmable activation of the cGAS-STING pathway through precise self-assembly. The resulting DNA nanodevice acts as both a nanocarrier and agonist. Upon local administration, it demonstrates the ability of macrophage-selective uptake, endosomal escape, and cytosolic release of the cGAS-recognizing DNA segment, leading to robust activation of the cGAS-STING pathway and enhanced antitumor efficacy. Moreover, DNDA elicits a synergistic therapeutic effect when combined with immune checkpoint blockade. The study broadens the application of DNA nanotechnology as an immune stimulator for cGAS-STING activation.

7.
Se Pu ; 42(5): 474-480, 2024 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-38736391

RESUMO

A method was established for the simultaneous detection of 12 prohibited veterinary drugs, including ß2-receptor agonists, nitrofuran metabolites, nitroimidazoles, chlorpromazine, and chloramphenicol, in pig urine. The sample was pretreated by enzymolysis, acid hydrolysis/derivatization, and liquid-liquid extraction combined with solid-phase extraction. Detection was performed using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Ammonium acetate solution (0.2 mol/L, 4.5 mL) and ß-glucuronidase/aryl sulfatase (40 µL) were added to the sample, which was subsequently enzymolized at 37 ℃ for 2 h. Then, 1.5 mL of 1.0 mol/L hydrochloric acid solution and 100 µL of 0.1 mol/L o-nitrobenzaldehyde solution were added to the sample. The mixture was incubated at 37 ℃ for 16 h, and the analytes were extracted with 8 mL of ethyl acetate by liquid-liquid extraction. The lower aqueous phase obtained after extraction was extracted and purified using a mixed cation-exchange solid-phase extraction column. The extracts were combined, the extraction solution was blow-dried with nitrogen, and the residue was redissolved for determination. The samples were analyzed under multiple-reaction monitoring mode with both positive and negative electrospray ionization, and quantified using an isotope internal standard method. The correlation coefficients (r) of the 12 compounds were >0.99. The limits of detection (LODs) and quantification (LOQs) of chloramphenicol were 0.05 and 0.1 µg/L, respectively, and the LODs and LOQs of the other compounds were 0.25 and 0.5 µg/L, respectively. The mean recoveries and RSDs at 1, 2, and 10 times the LOQ were 83.6%-115.3% and 2.20%-12.34%, respectively. The proposed method has the advantages of high sensitivity, good stability, and accurate quantification; thus, it is suitable for the simultaneous determination of the 12 prohibited veterinary drug residues in pig urine.


Assuntos
Resíduos de Drogas , Espectrometria de Massas em Tandem , Drogas Veterinárias , Animais , Espectrometria de Massas em Tandem/métodos , Suínos , Cromatografia Líquida de Alta Pressão/métodos , Drogas Veterinárias/urina , Drogas Veterinárias/análise , Resíduos de Drogas/análise , Cloranfenicol/urina , Cloranfenicol/análise
8.
RSC Adv ; 14(22): 15491-15498, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38741972

RESUMO

Massive hemorrhage caused by injuries and surgical procedures is a major challenge in emergency medical scenarios. Conventional means of hemostasis often fail to rapidly and efficiently control bleeding, especially in inaccessible locations. Herein, a type of smart nanoliposome with ultrasonic responsiveness, loaded with thrombin (thrombin@liposome, named TNL) was developed to serve as an efficient and rapid hemostatic agent. Firstly, the hydrophilic cavities of the liposomes were loaded onto the sono-sensitive agent protoporphyrin. Secondly, a singlet oxygen-sensitive chemical bond was connected with the hydrophobic and hydrophilic ends of liposomes in a chemical bond manner. Finally, based on the host guest effect between ultrasound and the sono-sensitizer, singlet oxygen is continuously generated, which breaks the hydrophobic and hydrophilic ends of liposome fragments, causing spatial collapse of the TNL structure, swiftly releases thrombin loaded in the hydrophilic capsule cavity, thereby achieving accurate and rapid local hemostasis (resulted in a reduction of approximately 67% in bleeding in the rat hemorrhage model). More importantly, after thorough assessments of biocompatibility and biodegradability, it has been confirmed that TNL possesses excellent biosafety, providing a new avenue for efficient and precise hemostasis.

9.
J Voice ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772832

RESUMO

OBJECTIVES: The objective of this study was to assess voice changes in patients with nasopharyngeal carcinoma (NPC) using subjective and objective assessment tools and to make inferences regarding the underlying pathological causes for different phases of radiotherapy (RT). METHODS: A total of 187 (123 males and 64 females) patients with post-RT NPC with no recurrence of malignancy or other voice diseases and 17 (11 males and 6 females) healthy individuals were included in this study. The patients were equally divided into 11 groups according to the number of years after RT. The acoustic analyses, GRBAS (grade, roughness, breathiness, asthenia, and strain) scales, and Voice Handicap Index (VHI)-10 scores were collected and analyzed. RESULTS: The fundamental frequency (F0) parameters in years 1 and 2 and year 11 were significantly lower in patients with NPC than in healthy individuals. The maximum phonation times in years 1 and 11 were significantly shorter than those in healthy individuals. The jitter parameters were significantly different between year 1 and from years 8 to 11 and the healthy individuals. The shimmer parameters were significantly different between years 1, from years 9 to 11, and healthy individuals. Hoarseness was the most prominent problem compared to other items of the GRBAS. The VHI-10 scores were significantly different between years 1 and 2 and year 11 after RT in patients with NPC. CONCLUSIONS: Voice quality was worse in the first 2 years and from years 8 to 11 but remained relatively normal from years 3 to 7 after RT. Patient-reported voice handicaps began during year 3 after RT. The most prominent problem was perceived hoarseness, which was evident in the first 2 years and from years 9 to 11 after RT. The radiation-induced mucous edema, laryngeal intrinsic muscle fibrosis, nerve injuries, upper respiratory tract changes, and decreased lung capacity might be the pathological reasons for voice changes in post-RT patients with NPC.

10.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38701412

RESUMO

Trajectory inference is a crucial task in single-cell RNA-sequencing downstream analysis, which can reveal the dynamic processes of biological development, including cell differentiation. Dimensionality reduction is an important step in the trajectory inference process. However, most existing trajectory methods rely on cell features derived from traditional dimensionality reduction methods, such as principal component analysis and uniform manifold approximation and projection. These methods are not specifically designed for trajectory inference and fail to fully leverage prior information from upstream analysis, limiting their performance. Here, we introduce scCRT, a novel dimensionality reduction model for trajectory inference. In order to utilize prior information to learn accurate cells representation, scCRT integrates two feature learning components: a cell-level pairwise module and a cluster-level contrastive module. The cell-level module focuses on learning accurate cell representations in a reduced-dimensionality space while maintaining the cell-cell positional relationships in the original space. The cluster-level contrastive module uses prior cell state information to aggregate similar cells, preventing excessive dispersion in the low-dimensional space. Experimental findings from 54 real and 81 synthetic datasets, totaling 135 datasets, highlighted the superior performance of scCRT compared with commonly used trajectory inference methods. Additionally, an ablation study revealed that both cell-level and cluster-level modules enhance the model's ability to learn accurate cell features, facilitating cell lineage inference. The source code of scCRT is available at https://github.com/yuchen21-web/scCRT-for-scRNA-seq.


Assuntos
Algoritmos , Análise da Expressão Gênica de Célula Única , Biologia Computacional/métodos , RNA-Seq/métodos , Análise da Expressão Gênica de Célula Única/métodos , Software
11.
World J Gastroenterol ; 30(14): 2038-2058, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38681131

RESUMO

BACKGROUND: Acute pancreatitis (AP) encompasses a spectrum of pancreatic inflammatory conditions, ranging from mild inflammation to severe pancreatic necrosis and multisystem organ failure. Given the challenges associated with obtaining human pancreatic samples, research on AP predominantly relies on animal models. In this study, we aimed to elucidate the fundamental molecular mechanisms underlying AP using various AP models. AIM: To investigate the shared molecular changes underlying the development of AP across varying severity levels. METHODS: AP was induced in animal models through treatment with caerulein alone or in combination with lipopolysaccharide (LPS). Additionally, using Ptf1α to drive the specific expression of the hM3 promoter in pancreatic acinar cells transgenic C57BL/6J- hM3/Ptf1α(cre) mice were administered Clozapine N-oxide to induce AP. Subsequently, we conducted RNA sequencing of pancreatic tissues and validated the expression of significantly different genes using the Gene Expression Omnibus (GEO) database. RESULTS: Caerulein-induced AP showed severe inflammation and edema, which were exacerbated when combined with LPS and accompanied by partial pancreatic tissue necrosis. Compared with the control group, RNA sequencing analysis revealed 880 significantly differentially expressed genes in the caerulein model and 885 in the caerulein combined with the LPS model. Kyoto Encyclopedia of Genes and Genomes enrichment analysis and Gene Set Enrichment Analysis indicated substantial enrichment of the TLR and NOD-like receptor signaling pathway, TLR signaling pathway, and NF-κB signaling pathway, alongside elevated levels of apoptosis-related pathways, such as apoptosis, P53 pathway, and phagosome pathway. The significantly elevated genes in the TLR and NOD-like receptor signaling pathways, as well as in the apoptosis pathway, were validated through quantitative real-time PCR experiments in animal models. Validation from the GEO database revealed that only MYD88 concurred in both mouse pancreatic tissue and human AP peripheral blood, while TLR1, TLR7, RIPK3, and OAS2 genes exhibited marked elevation in human AP. The genes TUBA1A and GADD45A played significant roles in apoptosis within human AP. The transgenic mouse model hM3/Ptf1α(cre) successfully validated significant differential genes in the TLR and NOD-like receptor signaling pathways as well as the apoptosis pathway, indicating that these pathways represent shared pathological processes in AP across different models. CONCLUSION: The TLR and NOD receptor signaling pathways play crucial roles in the inflammatory progression of AP, notably the MYD88 gene. Apoptosis holds a central position in the necrotic processes of AP, with TUBA1A and GADD45A genes exhibiting prominence in human AP.


Assuntos
Ceruletídeo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pâncreas , Pancreatite , Fatores de Transcrição , Animais , Ceruletídeo/toxicidade , Camundongos , Pancreatite/genética , Pancreatite/induzido quimicamente , Pancreatite/patologia , Pancreatite/metabolismo , Perfilação da Expressão Gênica/métodos , Pâncreas/patologia , Pâncreas/metabolismo , Humanos , Transcriptoma , Masculino , Transdução de Sinais , Células Acinares/metabolismo , Células Acinares/patologia
12.
ACS Biomater Sci Eng ; 10(4): 2486-2497, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38445596

RESUMO

Islet or ß-cell transplantation is currently considered to be the ideal treatment for diabetes, and three-dimensional (3D) bioprinting of a bionic pancreas with physiological stiffness is considered to be promising for the encapsulation and transplantation of ß-cells. In this study, a 5%GelMA/2%AlgMA hybrid hydrogel with pancreatic physiological stiffness was constructed and used for ß-cell encapsulation, 3D bioprinting, and in vivo transplantation to evaluate glycemic control in diabetic mice. The hybrid hydrogel had good cytocompatibility and could induce insulin-producing cells (IPCs) to form pseudoislet structures and improve insulin secretion. Furthermore, we validated the importance of betacellulin (BTC) in IPCs differentiation and confirmed that IPCs self-regulation was achieved by altering the nuclear and cytoplasmic distributions of BTC expression. In vivo transplantation of diabetic mice quickly restored blood glucose levels. In the future, 3D bioprinting of ß-cells using biomimetic hydrogels will provide a promising platform for clinical islet transplantation for the treatment of diabetes.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Camundongos , Animais , Diabetes Mellitus Experimental/terapia , Hidrogéis/farmacologia , Hidrogéis/química , Controle Glicêmico , Biomimética , Células Secretoras de Insulina/metabolismo
13.
Adv Sci (Weinh) ; 11(20): e2305799, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38502872

RESUMO

Lead halide perovskites with superior optoelectrical properties are emerging as a class of excellent materials for applications in solar cells and light-emitting devices. However, perovskite films often exhibit abundant intrinsic defects, which can limit the efficiency of perovskite-based optoelectronic devices by acting as carrier recombination centers. Thus, an understanding of defect chemistry in lead halide perovskites assumes a prominent role in further advancing the exploitation of perovskites, which, to a large extent, is performed by relying on first-principles calculations. However, the complex defect structure, strong anharmonicity, and soft lattice of lead halide perovskites pose challenges to defect studies. In this perspective, on the basis of briefly reviewing the current knowledge concerning computational studies on defects, this work concentrates on addressing the unsolved problems and proposing possible research directions in future. This perspective particularly emphasizes the indispensability of developing advanced approaches for deeply understanding the nature of defects and conducting data-driven defect research for designing reasonable strategies to further improve the performance of perovskite applications. Finally, this work highlights that theoretical studies should pay more attention to establishing close and clear links with experimental investigations to provide useful insights to the scientific and industrial communities.

14.
Int J Obes (Lond) ; 48(6): 749-763, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38379083

RESUMO

Obesity is a major global health concern because of its strong association with metabolic and neurodegenerative diseases such as diabetes, dementia, and Alzheimer's disease. Unfortunately, brain insulin resistance in obesity is likely to lead to neuroplasticity deficits. Since the evidence shows that insulin resistance in brain regions abundant in insulin receptors significantly alters mitochondrial efficiency and function, strategies targeting the mitochondrial quality control system may be of therapeutic and practical value in obesity-induced cognitive decline. Exercise is considered as a powerful stimulant of mitochondria that improves insulin sensitivity and enhances neuroplasticity. It has great potential as a non-pharmacological intervention against the onset and progression of obesity associated neurodegeneration. Here, we integrate the current knowledge of the mechanisms of neurodegenration in obesity and focus on brain insulin resistance to explain the relationship between the impairment of neuronal plasticity and mitochondrial dysfunction. This knowledge was synthesised to explore the exercise paradigm as a feasible intervention for obese neurodegenration in terms of improving brain insulin signals and regulating the mitochondrial quality control system.


Assuntos
Encéfalo , Terapia por Exercício , Resistência à Insulina , Mitocôndrias , Obesidade , Humanos , Obesidade/terapia , Obesidade/complicações , Obesidade/metabolismo , Resistência à Insulina/fisiologia , Mitocôndrias/metabolismo , Encéfalo/metabolismo , Terapia por Exercício/métodos , Doenças Neurodegenerativas/terapia , Animais
15.
Front Biosci (Landmark Ed) ; 29(2): 62, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38420807

RESUMO

BACKGROUND: Mesenchymal cells, including hepatic stellate cells (HSCs), fibroblasts (FBs), myofibroblasts (MFBs), and vascular smooth muscle cells (VSMCs), are the main cells that affect liver fibrosis and play crucial roles in maintaining tissue homeostasis. The dynamic evolution of mesenchymal cells is very important but remains to be explored for researching the reversible mechanism of hepatic fibrosis and its evolution mechanism of hepatic fibrosis to cirrhosis. METHODS: Here, we analysed the transcriptomes of more than 50,000 human single cells from three cirrhotic and three healthy liver tissue samples and the mouse hepatic mesenchymal cells of two healthy and two fibrotic livers to reconstruct the evolutionary trajectory of hepatic mesenchymal cells from a healthy to a cirrhotic state, and a subsequent integrative analysis of bulk RNA sequencing (RNA-seq) data of HSCs from quiescent to active (using transforming growth factor ß1 (TGF-ß1) to stimulate LX-2) to inactive states. RESULTS: We identified core genes and transcription factors (TFs) involved in mesenchymal cell differentiation. In healthy human and mouse livers, the expression of NR1H4 and members of the ZEB families (ZEB1 and ZEB2) changed significantly with the differentiation of FB into HSC and VSMC. In cirrhotic human livers, VSMCs transformed into HSCs with downregulation of MYH11, ACTA2, and JUNB and upregulation of PDGFRB, RGS5, IGFBP5, CD36, A2M, SOX5, and MEF2C. Following HSCs differentiation into MFBs with the upregulation of COL1A1, TIMP1, and NR1H4, a small number of MFBs reverted to inactivated HSCs (iHSCs). The differentiation trajectory of mouse hepatic mesenchymal cells was similar to that in humans; however, the evolution trajectory and proportion of cell subpopulations that reverted from MFBs to iHSCs suggest that the mouse model may not accurately reflect disease progression and outcome in humans. CONCLUSIONS: Our analysis elucidates primary genes and TFs involved in mesenchymal cell differentiation during liver fibrosis using scRNA-seq data, and demonstrated the core genes and TFs in process of HSC activation to MFB and MFB reversal to iHSC using bulk RNA-seq data of human fibrosis induced by TGF-ß1. Furthermore, our findings suggest promising targets for the treatment of liver fibrosis and provide valuable insights into the molecular mechanisms underlying its onset and progression.


Assuntos
Análise da Expressão Gênica de Célula Única , Fatores de Transcrição , Camundongos , Animais , Humanos , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Tetracloreto de Carbono/efeitos adversos , Tetracloreto de Carbono/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Fígado/metabolismo , Diferenciação Celular/genética , Células Estreladas do Fígado/metabolismo
16.
Int J Neurosci ; : 1-7, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197181

RESUMO

OBJECTIVE: To explore the clinical effect of atorvastatin calcium combined with clopidogrel in the treatment of patients with transient ischemic attacks (TIAs) and its effect on blood lipids and platelets. METHODS: Low-density lipoprotein cholesterol (LDL-C)], platelet-related parameters [prothrombin time (PT), activated partial thromboplastin time (APTT), platelet count (PLT)], incidence of cerebral infarction, and adverse reactions. RESULTS: The clinical outcomes of the experimental group patients were significantly better than those of the control group patients (p < 0.05). The experimental group exhibited notably lower levels of TG, TC, and LDL-C compared to the control group (p < 0.05). Platelet-related indices-PT, APTT, and PLT-showed no significant differences between groups before and after treatment (p > 0.05). The incidence of cerebral infarction was notably lower in the experimental group (p < 0.005), while the occurrence of adverse reactions showed no significant difference between groups (p > 0.05). CONCLUSION: Atorvastatin calcium combined with clopidogrel demonstrates a positive impact on individuals with TIAs by significantly lowering levels of LDL, total cholesterol, and triglycerides. However, it is noteworthy that platelet-related indices did not exhibit significant differences between the experimental and control groups. While the observed improvements in blood lipids are attributed to the effects of atorvastatin, the combination with clopidogrel did not show a substantial influence on platelet-related parameters. Thus, the overall therapeutic impact, particularly on platelet-related indices, may require further investigation and clarification. Despite these nuances, our findings suggest potential benefits in reducing the risk of adverse reactions and cerebral infarction, supporting the consideration of this approach for wider clinical use.

17.
Adv Sci (Weinh) ; 11(13): e2305631, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38243869

RESUMO

Stem cell-derived pancreatic progenitors (SC-PPs), as an unlimited source of SC-derived ß (SC-ß) cells, offers a robust tool for diabetes treatment in stem cell-based transplantation, disease modeling, and drug screening. Whereas, PDX1+/NKX6.1+ PPs enhances the subsequent endocrine lineage specification and gives rise to glucose-responsive SC-ß cells in vivo and in vitro. To identify the regulators that promote induction efficiency and cellular function maturation, single-cell RNA-sequencing is performed to decipher the transcriptional landscape during PPs differentiation. The comprehensive evaluation of functionality demonstrated that manipulating LINC MIR503HG using CRISPR in PP cell fate decision can improve insulin synthesis and secretion in mature SC-ß cells, without effects on liver lineage specification. Importantly, transplantation of MIR503HG-/- SC-ß cells in recipients significantly restored blood glucose homeostasis, accompanied by serum C-peptide release and an increase in body weight. Mechanistically, by releasing CtBP1 occupying the CDH1 and HES1 promoters, the decrease in MIR503HG expression levels provided an excellent extracellular niche and appropriate Notch signaling activation for PPs following differentiation. Furthermore, this exhibited higher crucial transcription factors and mature epithelial markers in CDH1High expressed clusters. Altogether, these findings highlighted MIR503HG as an essential and exclusive PP cell fate specification regulator with promising therapeutic potential for patients with diabetes.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Insulina , RNA Longo não Codificante , Humanos , Antígenos CD , Caderinas/genética , Caderinas/metabolismo , Diferenciação Celular/genética , Proteínas de Homeodomínio/genética , Insulina/metabolismo , Transativadores/metabolismo , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Secretoras de Insulina/metabolismo
18.
Toxicol Ind Health ; 40(4): 167-175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38285958

RESUMO

Phthalic acid esters (PAEs) and carbon nanotubes (CNTs) are common environmental pollutants and may degrade differently with different resulting biotoxicity, when present together. This study investigated the toxicological effects of singular or combined exposure to dibutyl phthalate (DBP) and multi-walled carbon nanotubes (MWCNTs) in KM mice. Results indicated that combined exposure led to slower weight gain and an increased leukocyte count in the blood, as well as liver tissue lesions and downregulation of organ coefficients. Additionally, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were elevated in the liver, and glucose, pyruvate, triglyceride (TG), and total cholesterol (T-CHO) were significantly reduced, suggesting compromised liver function. Furthermore, mRNA levels of genes related to hepatic glucose and lipid metabolism were significantly altered. These findings suggest that combined exposure to DBP and MWCNTs can have severe impacts on liver function in mice, highlighting the importance of considering interactions between multiple contaminants in environmental risk assessments.


Assuntos
Poluentes Ambientais , Nanotubos de Carbono , Ácidos Ftálicos , Animais , Camundongos , Dibutilftalato/toxicidade , Glucose/metabolismo , Fígado , Ácidos Ftálicos/toxicidade
19.
J Int Med Res ; 52(1): 3000605231220827, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180895

RESUMO

OBJECTIVE: We aimed to explore the prognostic value of Septin9 DNA methylation in breast cancer. METHODS: Breast cancer patients with and without recurrence or metastasis and matched non-breast cancer patients were screened retrospectively from 2014 to 2016. Bisulfite conversion and fluorescence quantitative methylation-specific polymerase chain reaction were used to detect the Septin9 methylation status and distribution levels in patient breast tissues. RESULTS: Septin9 DNA methylation was more frequent in breast cancer tissues than in non-breast cancer tissues, but was not significantly correlated with any relevant breast cancer patient clinicopathological characteristic. Septin9 methylation rates were higher in patients with recurrence or metastasis. Septin9 methylation, tumor size, lymph node status, and progesterone receptor (PR) expression could influence prognosis. Septin9 methylation was significantly associated with worse disease-free survival in breast cancer patients, with receiver operating characteristic curve analysis indicating that it had good prognostic ability, with an area under the curve (AUC) value of 0.719. The AUC values increased when Septin9 methylation was combined with tumor size, lymph node status, and PR to predict prognosis. CONCLUSIONS: Septin9 DNA methylation was an independent predictors of breast cancer prognostic risk. This could possibly help improve comprehensive prognosis prediction methods when combined with other risk factors.


Assuntos
Neoplasias da Mama , Metilação de DNA , Septinas , Feminino , Humanos , Mama , Neoplasias da Mama/genética , Proteínas do Citoesqueleto , Metilação de DNA/genética , Recidiva Local de Neoplasia/genética , Estudos Retrospectivos , Septinas/genética
20.
PLoS One ; 19(1): e0296266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38227599

RESUMO

BACKGROUND: Sepsis, described as an inflammatory reaction to an infection, is a very social health problem with high mortality. This study aims to explore the new mechanism in the progression of sepsis. METHODS: We downloaded the GSE69528 dataset to screen differentially expressed genes (DEGs) for WGCNA, in which the key module was identified and analyzed by DMNC algorithm, expression verification and ROC curve analysis to identify the hub gene. Furthermore, the hub gene was analyzed by immunoassay, and the potential mechanism of hub gene in neutrophils was investigated by in vitro experiments. RESULTS: The turquoise module was the key module for sepsis in WGCNA on 94 DEGs. The top 20 genes of DMNC network were verified in GSE69528 and GSE9960, and 10 significant genes were obtained for ROC analysis. Based on the ROC curves, HP was considered the hub gene in sepsis, and its expression difference in sepsis and control groups was substantially significant. Further, it was demonstrated the knockdown of HP and PFKFB3 could suppress glycolysis and inflammatory cytokine levels in dHL-60 cell treated with LPS. CONCLUSION: In conclusion, HP is identified as a potential diagnostic indicator for sepsis patients, and HP promotes neutrophil inflammatory activation by regulating PFKFB2 in the glycolytic metabolism of sepsis confirmed by in vitro experiments. These will help us deepen the molecular mechanism of sepsis.


Assuntos
Neutrófilos , Sepse , Humanos , Sepse/genética , Algoritmos , Grupos Controle , Glicólise/genética , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Biologia Computacional , Fosfofrutoquinase-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...