RESUMO
Chronic wounds typically comprise of necrotic tissue and dried secretions, often culminating in the formation of a thick and tough layer of dead skin known as eschar. Removal of eschar is imperative to facilitate wound healing. Conventional approach for eschar removal involves surgical excision and grafting, which can be traumatic and frequently leads to viable tissue damage. There has been growing interest in the use of enzymatic agents for a gentler approach to debridement, utilizing proteolytic enzymes. In this study, a purified intracellular recombinant serine protease from Bacillus sp. (SPB) and its cream formulation were employed to evaluate their ability to degrade artificial wound eschar; composed of collagen, fibrin, and elastin. Degradation was assessed based on percentage weight reduction of eschar biomass, analysis via sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), and scanning electron microscopy (SEM). Both SPB and its cream formulation were able to degrade up to 50â¯% artificial wound eschar, with the SPB cream maintaining its degradation efficiency for up to 24â¯hours. Additionally, the SPB-based cream demonstrated the ability to hydrolyze proteinaceous components of eschars individually (fibrin and collagen) as determined through qualitative assessment. These findings suggest that SPB holds promise for the debridement of wound eschar.
Assuntos
Bacillus , Desbridamento , Fibrina , Serina Proteases , Cicatrização , Serina Proteases/metabolismo , Cicatrização/efeitos dos fármacos , Fibrina/metabolismo , Bacillus/enzimologia , Humanos , Colágeno/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Recombinantes/metabolismo , Elastina/metabolismoRESUMO
In nature, bacteria are ubiquitous and can be categorized as beneficial or harmless to humans, but most bacteria have one thing in common which is their ability to produce biofilm. Biofilm is encased within an extracellular polymeric substance (EPS) which provides resistance against antimicrobial agents. Protease enzymes have the potential to degrade or promote the growth of bacterial biofilms. In this study, the effects of a recombinant intracellular serine protease from Bacillus sp. (SPB) on biofilms from Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa were analyzed. SPB was purified using HisTrap HP column and concentrated using Amicon 30 ultra-centrifugal filter. SPB was added with varying enzyme activity and assay incubation period after biofilms were formed in 96-well plates. SPB was observed to have contrasting effects on different bacterial biofilms, where biofilm degradations were observed for both 7-day-old A. baumannii (37.26%) and S. aureus (71.51%) biofilms. Meanwhile, SPB promoted growth of P. aeruginosa biofilm up to 176.32%. Compatibility between protein components in S. aureus biofilm with SPB as well as a simpler membrane structure morphology led to higher biofilm degradation for S. aureus compared to A. baumannii. However, SPB promoted growth of P. aeruginosa biofilm due likely to its degrading protein factors that are responsible for biofilm detachment and dispersion, thus resulting in more multi-layered biofilm formation. Commercial protease Savinase which was used as a comparison showed degradation for all three bacterial biofilms. The results obtained are unique and will expand our understanding on the effects that bacterial proteases have toward biofilms.
Assuntos
Bacillus , Serina Proteases , Humanos , Serina Proteases/genética , Matriz Extracelular de Substâncias Poliméricas , Staphylococcus aureus , BiofilmesRESUMO
Biohydrogen production through dark fermentation is very attractive as a solution to help mitigate the effects of climate change, via cleaner bioenergy production. Dark fermentation is a process where organic substrates are converted into bioenergy, driven by a complex community of microorganisms of different functional guilds. Understanding of the microbiomes underpinning the fermentation of organic matter and conversion to hydrogen, and the interactions among various distinct trophic groups during the process, is critical in order to assist in the process optimisations. Research in biohydrogen production via dark fermentation is currently advancing rapidly, and various microbiology and molecular biology tools have been used to investigate the microbiomes. We reviewed here the different systems used and the production capacity, together with the diversity of the microbiomes used in the dark fermentation of industrial wastes, with a special emphasis on palm oil mill effluent (POME). The current challenges associated with biohydrogen production were also included. Then, we summarised and discussed the different molecular biology tools employed to investigate the intricacy of the microbial ecology associated with biohydrogen production. Finally, we included a section on the future outlook of how microbiome-based technologies and knowledge can be used effectively in biohydrogen production systems, in order to maximise the production output.
RESUMO
The economy of mass bioflocculant production and its industrial application is couple with the cost of production. The growth medium is the most significant factor that accounts for the production cost. In order to find a substitute for the expensive commercial media mostly the carbon and nitrogen sources used for bioflocculant production, we use chicken viscera as a sole source of nutrient for bioflocculant production. The culture conditions for Aspergillus flavus S44-1 growth and bioflocculant yield were optimized through one factor at a time (OFAT). The use of chicken viscera as a sole source to develop a culture medium seems to be more appropriate, simple, reduce cost of bioflocculant production and in addition offers a sustainable means of managing environmental pollution by the poultry waste. In this article, we focus on detailed description of the steps involve in developing an optimized culture medium using chicken viscera as a sole source for bioflocculant production. â¢A new media for bioflocculant production was developed from chicken viscera.â¢The culture conditions for bioflocculant production were determined and optimized.â¢The bioflocculant yield and efficiency were parallel to mycelial weight at log phase.
RESUMO
The economics of bioflocculant production is coupled with the use of a low-cost substrate at appropriate culture conditions. The use of a waste substrate for this purpose offers an additional treatment measure to mitigate environmental pollution. We investigated the growth of Aspergillus flavus and its bioflocculant yield using chicken viscera hydrolysate as the sole media. The effects of culture conditions including time, pH, shaker speed, temperature and inoculum size on bioflocculant production were all investigated and optimised through response surface method based on the central component design (CCD) package of Design Expert. Next, the purified bioflocculant was physically and chemically characterised. Under optimised culture conditions (incubation time 72 h, pH 7, shaker speed 150 rpm, temperature 35 °C and inoculum 4%), 6.75 g/L yield of crude bioflocculant was recorded. The bioflocculant activity was mostly distributed in the cell-free supernatant with optimum efficiency of 91.8% at a dose of 4 mL/100 mL Kaolin suspension. The purified bioflocculant was a glycoprotein consisting of 23.46% protein and 74.5% sugar, including 46% neutral sugar and 2.01% uronic acid. The X-ray photoelectron spectroscopy fundamental analysis of the purified bioflocculant indicated that the mass proportion of C, O and N, were 63.46%, 27.87% and 8.86%, respectively. The bioflocculant is mainly composed of carbonyl, amino, hydroxyl, and amide functional groups. This study for the first time indicates a high potential of bioflocculant yield from chicken viscera at the appropriate culture conditions.
Assuntos
Aspergillus flavus/metabolismo , Meios de Cultura/química , Animais , Galinhas , Glicoproteínas/metabolismo , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , VíscerasRESUMO
The biodegradability and safety of the bioflocculants make them a potential alternative to non-biodegradable chemical flocculants for wastewater treatment. However, low yield and production cost has been reported to be the limiting factor for large scale bioflocculant production. Although the utilization of cheap nutrient sources is generally appealing for large scale bioproduct production, exploration to meet the demand for them is still low. Although much progress has been achieved at laboratory scale, Industrial production and application of bioflocculant is yet to be viable due to cost of the production medium and low yield. Thus, the prospects of bioflocculant application as an alternative to chemical flocculants is linked to evaluation and utilization of cheap alternative and renewable nutrient sources. This review evaluates the latest literature on the utilization of waste/wastewater as an alternative substitute for conventional expensive nutrient sources. It focuses on the mechanisms and metabolic pathways involved in microbial flocculant synthesis, culture conditions and nutrient requirements for bioflocculant production, pre-treatment, and also optimization of waste substrate for bioflocculant synthesis and bioflocculant production from waste and their efficiencies. Utilization of wastes as a microbial nutrient source drastically reduces the cost of bioflocculant production and increases the appeal of bioflocculant as a cost-effective alternative to chemical flocculants.