RESUMO
Abscisic acid (ABA) plays a crucial role in promoting plant stress resistance and seed dormancy. However, how ABA regulates rice quality remains unclear. This study identifies a key transcription factor SLR1-like2 (SLRL2), which mediates the ABA-regulated amylose content (AC) of rice. Mechanistically, SLRL2 interacts with NF-YB1 to co-regulate Wx, a determinant of AC and rice quality. In contrast to SLR1, SLRL2 is ABA inducible but insensitive to GA. In addition, SLRL2 exhibits DNA-binding activity and directly regulates the expression of Wx, bHLH144 and MFT2. SLRL2 competes with NF-YC12 for interaction with NF-YB1. NF-YB1 also directly represses SLRL2 transcription. Genetic validation supports that SLRL2 functions downstream of NF-YB1 and bHLH144 in regulating rice AC. Thus, an NF-YB1-SLRL2-bHLH144 regulatory module is successfully revealed. Furthermore, SLRL2 regulates rice dormancy by modulating the expression of MFT2. In conclusion, this study revealed an ABA-responsive regulatory cascade that functions in both rice quality and seed dormancy.
Assuntos
Ácido Abscísico , Regulação da Expressão Gênica de Plantas , Oryza , Dormência de Plantas , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Dormência de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Ligação a CCAAT/metabolismo , Fator de Ligação a CCAAT/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Amilose/metabolismo , Grão Comestível/metabolismo , Grão Comestível/genética , Plantas Geneticamente ModificadasRESUMO
Seed dormancy and germination are key events in plant development and are critical for crop production, and defects in seed germination or the inappropriate release of seed dormancy cause substantial losses in crop yields. Rice is the staple food for more than half of the world's population, and preharvest sprouting (PHS) is one of the most severe problems in rice production, due to a low level of seed dormancy, especially under warm and damp conditions. Therefore, PHS leads to yield loss and a decrease in rice quality and vitality. We reveal that mutation of OsbZIP09 inhibited rice PHS. Analysis of the expression of OsbZIP09 and its encoded protein sequence and structure indicated that OsbZIP09 is a typical bZIP transcription factor that contains conserved bZIP domains, and its expression is induced by ABA. Moreover, RNA sequencing (RNA-seq) and DNA affinity purification sequencing (DAP-seq) analyses were performed and 52 key direct targets of OsbZIP09 were identified, including OsLOX2 and Late Embryogenesis Abundant (LEA) family genes, which are involved in controlling seed germination. Most of these key targets showed consistent changes in expression in response to abscisic acid (ABA) treatment and OsbZIP09 mutation. The data characterize a number of key target genes that are directly regulated by OsbZIP09 and contribute to revealing the molecular mechanism that underlies how OsbZIP09 controls rice seed germination.