Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Neuropharmacology ; 260: 110133, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197818

RESUMO

The dopaminergic system is a complex and powerful neurotransmitter system in the brain. It plays an important regulatory role in motivation, reward, cognition, and motor control. In recent decades, research in the field of the dopaminergic system and neurons has increased exponentially and is gradually becoming a point of intervention in the study and understanding of a wide range of neurological diseases related to human health. Studies have shown that the dopaminergic system and neurons are involved in the development of many neurological diseases (including, but not limited to Parkinson's disease, schizophrenia, depression, attention deficit hyperactivity disorder, etc.) and that dopaminergic neurons either have too much stress or too weak function in the dopaminergic system can lead to disease. Therefore, targeting dopaminergic neurons is considered key to treating these diseases. This article provides a comprehensive review of the dopaminergic system and neurons in terms of brain region distribution, physiological function and subtypes of dopaminergic neurons, as well as the role of the dopaminergic system and neurons in a variety of diseases.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Doenças do Sistema Nervoso , Humanos , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Dopamina/metabolismo , Doenças do Sistema Nervoso/metabolismo , Encéfalo/metabolismo
2.
Front Plant Sci ; 15: 1418319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070909

RESUMO

Broccoli, a cruciferous vegetable, has a unique indeterminate inflorescence structure known as curds. It is the main edible organ of broccoli and has a rich nutritional value and health benefits. However, the formation and development mechanism of the curd is still not well understood. In the present study, the shoot apical meristem (SAM) stage and three different development stages of curd (formation stage (FS), expansion stage (ES), and maturation stage (MS)) were identified and subjected to transcriptome sequencing to uncover the potential genes and regulatory networks involved in curd formation and development. The results indicated that the genes associated with the development of SAM such as BolAP1A, BolAP1C, BolCAL, and BolAGL6 play an important role in the abnormal differentiation of the curd apical buds. The genes, BolFRI, BolbHLH89, BolKAN4, BolAGL12, and BolAGL24, displayed significantly differential expression patterns in curd development may function in the regulation of the transition from inflorescence meristem (IM) to floral meristem (FM). Moreover, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed genes (DEGs) indicate that phytohormones, such as auxin (AUX), gibberellins (GA), and abscisic acid (ABA) also play an important role in SAM proliferation and the transition from SAM to IM. In addition, the genes regulating photosynthetic reaction (BolLHCA1, BolLHCB1, BolPsbO, etc.) have a key involvement in the differentiation of secondary IMs during curd expansion. The genes associated with the metabolism of starch and sucrose (e.g., BolSPS4, BolBAM4) were significantly upregulated at the MS should contribute to the maturation of the curd. These findings provide new insights into the potential key regulatory factors and metabolic pathways involved in the formation and development of broccoli curds.

4.
J Ethnopharmacol ; 334: 118464, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908492

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonol (PAE) and glycyrrhizic acid (GLY) are predominate components of 14 blood-entering ones of Piantongtang No. 1, which is a traditional Chinese medicine prescription for chronic migraine with minimal side effects. Both paeonol and glycyrrhizic acid exhibit analgesic, neuroprotective and anti-inflammatory properties individually. Our previous research has highlighted their combined effect (PAE + GLY) in ameliorating migraine symptoms. However, there are not yet any studies exploring the mechanism of action of PAE + GLY in the treatment of migraine. AIM OF THE STUDY: This research aimed to determine the mechanism of PAE + GLY in ameliorating the recurrent nitroglycerin-induced migraine-like phenotype in rats. MATERIALS AND METHODS: Using a nitroglycerin-induced migraine model via subcutaneous injection in the neck, we evaluated the effect of PAE + GLY on migraine-like symptoms. Behavioural tests and biomarkers analysis were employed, alongside transcriptome sequencing (RNA-seq). Mechanistic insights were further verified utilising reverse transcription quantitative PCR (RT-qPCR), Western blot (WB), ELISA and immunofluorescence (IF) techniques. RESULTS: Following treatment with PAE + GLY, hyperalgesia threshold and 5-hydroxytryptamine (5-HT) levels increased, and migraine-like head scratching, histamine and calcitonin gene-related peptide (CGRP) levels were reduced. RNA-Seq experiments revealed that PAE + GLY upregulated the expression of Glutamate decarboxylase 2 (GAD2) and γ-aminobutyric acid type B receptor subunit 2 (GABBR2) genes. This upregulation activated the GABAergic synapse pathway, effectively inhibiting migraine attacks. Further validation demonstrated an increase in γ-aminobutyric acid (GABA) content in cerebrospinal fluid post PAE + GLY treatment, coupled with increased expression of dural GAD2, GABBR2 and transient receptor potential channel M8 (TRPM8). Consequently, this inhibited the expression of dural cAMP-dependent protein kinase catalytic subunit alpha (PRKACA) and transient receptor potential channel type 1 (TRPV1), subsequently downregulating p-ERK1/2, p-AKT1, IL-1ß and TNF-α. CONCLUSIONS: Our findings underscore that PAE + GLY ameliorates inflammatory hyperalgesia migraine by upregulating inhibitory neurotransmitters and modulating the GABBR2/TRPM8/PRKACA/TRPV1 pathway.


Assuntos
Acetofenonas , Ácido Glicirrízico , Transtornos de Enxaqueca , Nitroglicerina , Canais de Cátion TRPM , Canais de Cátion TRPV , Animais , Masculino , Ratos , Acetofenonas/farmacologia , Modelos Animais de Doenças , Quimioterapia Combinada , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/metabolismo , Nitroglicerina/toxicidade , Nitroglicerina/farmacologia , Fenótipo , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-alfa/genética , Ratos Sprague-Dawley , Receptores de GABA/metabolismo , Receptores de GABA/genética , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética
5.
Sci Rep ; 14(1): 13145, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849430

RESUMO

Airway remodelling in lung diseases can be treated by inhibiting excessive smooth muscle cell proliferation. Zedoarondiol (Zed) is a natural compound isolated from the Chinese herb Curcuma longa. The caveolin-1 (CAV-1) is widely expressed in lung cells and plays a key role in platelet-derived growth factor (PDGF) signalling and cell proliferation. This study aims to investigate the effect of Zed on human bronchial smooth muscle cell (HBSMC) proliferation and explore its potential molecular mechanisms. We assessed the effect of Zed on the proliferation of PDGF-stimulated HBSMCs and performed proteomic analysis to identify potential molecular targets and pathways. CAV1 siRNA was used to validate our findings in vitro. In PDGF-stimulated HBSMCs, Zed significantly inhibited excessive proliferation of HBSMCs. Proteomic analysis of zedoarondiol-treated HBSMCs revealed significant enrichment of differentially expressed proteins in cell proliferation-related pathways and biological processes. Zed inhibition of HBSMC proliferation was associated with upregulation of CAV1, regulation of the CAV-1/PDGF pathway and inhibition of MAPK and PI3K/AKT signalling pathway activation. Treatment of HBSMCs with CAV1 siRNA partly reversed the inhibitory effect of Zed on HBSMC proliferation. Thus, this study reveals that zedoarondiol potently inhibits HBSMC proliferation by upregulating CAV-1 expression, highlighting its potential value in airway remodelling and related diseases.


Assuntos
Brônquios , Caveolina 1 , Proliferação de Células , Miócitos de Músculo Liso , Fator de Crescimento Derivado de Plaquetas , Transdução de Sinais , Humanos , Caveolina 1/metabolismo , Caveolina 1/genética , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/citologia , Brônquios/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteômica/métodos , Fosfatidilinositol 3-Quinases/metabolismo , Células Cultivadas
6.
Biomolecules ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540770

RESUMO

Sulforaphane (SFN) is one of the hydrolysates of glucosinolates (GSLs), primarily derived from Brassica vegetables like broccoli. In clinical therapy, SFN has been proven to display antimicrobial, anticancer, antioxidant, and anti-inflammatory properties. However, the antimicrobial effects and mechanism of SFN against plant pathogens need to be further elucidated, which limits its application in agriculture. In this study, the genetic factors involved in SFN biosynthesis in 33 B. oleracea varieties were explored. The finding showed that besides the genetic background of different B. oleracea varieties, myrosinase and ESP genes play important roles in affecting SFN content. Subsequently, the molecular identification cards of these 33 B. oleracea varieties were constructed to rapidly assess their SFN biosynthetic ability. Furthermore, an optimized protocol for SFN extraction using low-cost broccoli curds was established, yielding SFN-enriched extracts (SFN-ee) containing up to 628.44 µg/g DW of SFN. The antimicrobial activity assay confirmed that SFN-ee obtained here remarkably inhibit the proliferation of nine tested microorganisms including four plant pathogens by destroying their membrane integrity. Additionally, the data demonstrated that exogenous application of SFN-ee could also induce ROS accumulation in broccoli leaves. These results indicated that SFN-ee should play a dual role in defense against plant pathogens by directly killing pathogenic cells and activating the ROS signaling pathway. These findings provide new evidence for the antimicrobial effect and mechanism of SFN against plant pathogens, and suggest that SFN-ee can be used as a natural plant antimicrobial agent for crop protection and food preservation.


Assuntos
Anti-Infecciosos , Brassica , Isotiocianatos , Sulfóxidos , Brassica/metabolismo , Proteção de Cultivos , Espécies Reativas de Oxigênio/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
7.
J Ethnopharmacol ; 328: 118015, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38499261

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) formula Banxia Xiexin decoction (BXD) has definite therapeutic effect in treating stress-induced gastric ulceration (SIGU) and many other gastrointestinal diseases, but its effect on gastric lymphatic pumping (GLP) remains unclear. AIM OF THE STUDY: Elucidating the role of GLP in SIGU and BXD treatment, and exploring the molecular mechanisms of GLP regulation. MATERIALS AND METHODS: In vivo GLP imaging were performed on SIGU rat model, and the lymphatic dynamic parameters were evaluated. Gastric antrum tissues and serum were collected for macroscopic, histopathological and ulcerative parameters analysis. Gastric lymphatic vessel (GLV) tissues were collected for RNA-Seq assays. Differentially expressed genes (DEGs) were screened from RNA-Seq result and submitted for transcriptomic analysis. Key DEGs and their derivative proteins were measured by qRT-PCR and WB. RESULTS: GLP was significantly suppressed in SIGU rats. BXD could recover GLP, ameliorate stomach lymphostasis, and alleviate the ulcerative damage. Transcriptome analysis of GLV showed the top up-DEGs were concentrated in smooth muscle contraction signaling pathway, while the top the down-DEGs were concentrated in energy metabolism pathways especially fatty acid degradation pathway, which indicated BXD can promote lymphatic smooth muscle contraction, regulate energy metabolism, and reduce fatty acid degradation. The most possible target of these mechanisms was the lymphatic smooth muscle cells (LSMCs) which drove the GLP. This speculation was further validated by the qRT-PCR and WB assessments for the level of key genes and proteins. CONCLUSIONS: By activating the smooth muscle contraction signaling pathway, restoring energy supply, modulating energy metabolism program and reducing fatty acid degradation, BXD effectively recovered GLP, mitigated the accumulation of inflammatory cytokines and metabolic wastes in the stomach, which importantly contributes to its efficacy in treating SIGU.


Assuntos
Medicamentos de Ervas Chinesas , Vasos Linfáticos , Úlcera Gástrica , Ratos , Animais , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Metabolismo Energético , Vasos Linfáticos/metabolismo , Ácidos Graxos/uso terapêutico
8.
J Pharm Pharmacol ; 76(6): 710-723, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38517943

RESUMO

OBJECTIVES: This study was designed to investigate the pharmacological activity and therapeutic mechanism of Mahuang Xixin Fuzi decoction (MXFD) on migraine. METHODS: Migraine model rats induced by nitroglycerin were established, and then orally administered with MXFD for 7 days. Blood and urine samples were collected to identify differential metabolites with metabolomics. To integrate the findings from network pharmacology and metabolomics analysis, the metabolites and targets related to MXFD therapy for migraine were filtered. KEY FINDINGS: MXFD was found to alleviate the symptoms of migraines in rats. After treatment with MXFD, nine metabolites were found to be regulated and returned to normal levels. MXFD acted directly on nine key targets including MAOB, MAOA, ADRB1, ADRB2, ADRB3, ADORA2A, ADORA2B, DRD5, and HTR4 and regulated two out of nine metabolites, namely deoxycholic acid and 5-methoxyindoleacetate. CONCLUSIONS: The study found that MXFD can alleviate migraines through multitarget and multicomponent interaction networks.


Assuntos
Medicamentos de Ervas Chinesas , Metabolômica , Transtornos de Enxaqueca , Nitroglicerina , Animais , Masculino , Ratos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Metabolômica/métodos , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Farmacologia em Rede , Nitroglicerina/farmacologia , Ratos Sprague-Dawley
9.
PeerJ ; 12: e16769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313014

RESUMO

Background: The relationship between hyperlactatemia and prognosis after cardiopulmonary bypass (CPB) is controversial, and some studies ignore the presence of lactic acidosis in patients with severe hyperlactacemia. This study explored the association between lactic acidosis (LA) and the occurrence of multiple organ dysfunction syndrome (MODS) after cardiopulmonary bypass. Methods: This study was a post hoc analysis of patients who underwent cardiac surgery between February 2017 and August 2018 and participated in a prospective study at Taizhou Hospital. The data were collected at: ICU admission (H0), and 4, 8, 12, 24, and 48 h after admission. Blood lactate levels gradually increased after CPB, peaking at H8 and then gradually decreasing. The patients were grouped as LA, hyperlactatemia (HL), and normal control (NC) based on blood test results 8 h after ICU admission. Basic preoperative, perioperative, and postoperative conditions were compared between the three groups, as well as postoperative perfusion and oxygen metabolism indexes. Results: There were 22 (19%), 73 (64%), and 19 (17%) patients in the LA, HL, and NC groups, respectively. APACHE II (24h) and SOFA (24h) scores were the highest in the LA group (P < 0.05). ICU stay duration was the longest for the LA group (48.5 (42.5, 50) h), compared with the HL (27 (22, 48) h) and NC (27 (25, 46) h) groups (P = 0.012). The LA group had the highest incidence of MODS (36%), compared with the HL (14%) and NC (5%) groups (P = 0.015). In the LA group, the oxygen extraction ratio (O2ER) was lower (21.5 (17.05, 32.8)%) than in the HL (31.3 (24.8, 37.6)%) and the NC group (31.3 (29.0, 35.4) %) (P = 0.018). In the univariable analyses, patient age (OR = 1.054, 95% CI [1.003-1.109], P = 0.038), the LA group (vs. the NC group, (OR = 10.286, 95% CI [1.148-92.185], P = 0.037), and ΔPCO2 at H8 (OR = 1.197, 95% CI [1.022-1.401], P = 0.025) were risk factor of MODS after CPB. Conclusions: We speculated that there was correlation between lactic acidosis and MODS after CPB. In addition, LA should be monitored intensively after CPB.


Assuntos
Acidose Láctica , Hiperlactatemia , Humanos , Acidose Láctica/epidemiologia , Ponte Cardiopulmonar/efeitos adversos , Hiperlactatemia/epidemiologia , Insuficiência de Múltiplos Órgãos/epidemiologia , Estudos Prospectivos , Complicações Pós-Operatórias/epidemiologia , Oxigênio
10.
BMC Plant Biol ; 24(1): 130, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383283

RESUMO

BACKGROUND: Grafting is widely used as an important agronomic approach to deal with environmental stresses. However, the molecular mechanism of grafted tomato scions in response to biotic stress and growth regulation has yet to be fully understood. RESULTS: This study investigated the resistance and growth performance of tomato scions grafted onto various rootstocks. A scion from a gray leaf spot-susceptible tomato cultivar was grafted onto tomato, eggplant, and pepper rootstocks, creating three grafting combinations: one self-grafting of tomato/tomato (TT), and two interspecific graftings, namely tomato/eggplant (TE) and tomato/pepper (TP). The study utilized transcriptome and DNA methylome analyses to explore the regulatory mechanisms behind the resistance and growth traits in the interspecific graftings. Results indicated that interspecific grafting significantly enhanced resistance to gray leaf spot and improved fruit quality, though fruit yield was decreased compared to self-grafting. Transcriptome analysis demonstrated that, compared to self-grafting, interspecific graftings triggered stronger wounding response and endogenous immune pathways, while restricting genes related to cell cycle pathways, especially in the TP grafting. Methylome data revealed that the TP grafting had more hypermethylated regions at CHG (H = A, C, or T) and CHH sites than the TT grafting. Furthermore, the TP grafting exhibited increased methylation levels in cell cycle related genes, such as DNA primase and ligase, while several genes related to defense kinases showed decreased methylation levels. Notably, several kinase transcripts were also confirmed among the rootstock-specific mobile transcripts. CONCLUSIONS: The study concludes that interspecific grafting alters gene methylation patterns, thereby activating defense responses and inhibiting the cell cycle in tomato scions. This mechanism is crucial in enhancing resistance to gray leaf spot and reducing growth in grafted tomato scions. These findings offer new insights into the genetic and epigenetic contributions to agronomic trait improvements through interspecific grafting.


Assuntos
Solanum lycopersicum , Transcriptoma , Solanum lycopersicum/genética , Epigenoma , Perfilação da Expressão Gênica/métodos , Frutas
11.
J Ethnopharmacol ; 321: 117539, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056541

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Panax Notoginseng (PN) can disperse blood stasis, hemostasis, and detumescence analgesic, which can be used for hemoptysis, hematemesis and another traumatic bleeding, and it is known as "A miracle hemostatic medicine". Studies show that the chemical composition of PN is relatively comprehensive, however, its hemostatic active ingredients have not been fully clarified. AIM OF STUDY: This study aimed to clarify the hemostatic effective components group (HECG) of PN, provide a foundation for the assessment of PN's quality and its comprehensive development, and for further studies on the pharmacodynamic material basis of other Traditional Chinese Medicines (TCMs). MATERIALS AND METHODS: UPLC-MS was used to establish the fingerprint and identify the common peaks in 44 batches of PN extracts (PNE). In addition, the plasma recalcification time and in vitro coagulation time were measured. For spectrum-effect analysis, bivariate correlation analysis (BCA) and partial least squares regression analysis (PLSR) were used to screen the hemostasis candidate active monomers of PN. The monomers were prepared by combining several preparative chromatography techniques. The efficacy was verified by plasma recalcification time, in vitro coagulation time, and a rat model of gastric hemorrhage. RESULTS: A total of 30 common peaks and hemostatic efficacy indexes of 44 batches of PNE were obtained. A total of 18 components were positively correlated with the comprehensive coagulation index by two statistical methods. Six and eleven monomers were obtained respectively by chromatographic preparation and procurement, and one monomer was eliminated due to preparation difficulty and other reasons. Seven active monomers with direct hemostatic effect and one active monomer with synergistic hemostatic effect were screened through plasma recalcification time, and their combinations were used as candidate HECG for hemostatic effect verification. The results of in vitro experiments showed that plasma recalcification time and in vitro coagulation time were significantly reduced (P < 0.05) in the HECG group, compared to the PNE group. The results of in vivo experiment also indicated that the hemostatic effect of HECG was comparable to that of PNE and PN powder. CONCLUSION: The composition and efficacy of the HECG of PN were screened and verified using the spectral correlation method and in vivo and in vitro efficacy verification; the HECG included Dencichine, Ginsenoside Rg1, Ginsenoside Rd, Ginsenoside Rh1, Ginsenoside F1, Notoginsenoside R1, Notoginsenoside Ft1 and Notoginsenoside Fe. These results laid a foundation for the quality evaluation of PN and provided a reference for the basic research of pharmacodynamic material basis of other TCMs.


Assuntos
Ginsenosídeos , Hemostáticos , Panax notoginseng , Panax , Saponinas , Ratos , Animais , Ginsenosídeos/farmacologia , Panax notoginseng/química , Hemostáticos/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Hemostasia , Cromatografia Líquida de Alta Pressão/métodos , Panax/química , Saponinas/farmacologia
12.
Pharm Biol ; 61(1): 973-985, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37390845

RESUMO

CONTEXT: Qing Cuo Formula (QCF) is a traditional Chinese medicine for treating acne, but its active compounds and molecular mechanisms are unclear. OBJECTIVE: To investigate the material basis and molecular mechanism of QCF. MATERIALS AND METHODS: In vivo experiments were conducted on 60 male golden hamsters with damp-heat acne, with a blank group, a spironolactone group and 3 QCF administration groups (given high, medium and low doses) over a 30-day period. Serum androgen and inflammatory cytokine levels were tested by ELISA. In vitro, chemical compositions of QCF were investigated by UPLC-LTQ-Orbitrap-MS. Network pharmacology approaches were used to analyse the protein-protein interaction (PPI) network and QCF active compounds-intersection targets-acne network. GO enrichment and KEGG pathway analysis was conducted subsequently. RESULTS: Low-dose QCF group (11.4 g/kg/day) showed significantly reduced levels of serum T (4.94 ± 0.36; 5.51 ± 0.36 ng/mL), DHT (6.67 ± 0.61; 8.09 ± 0.59 nmol/L), E2 (209.01 ± 20.92; 237.08 ± 13.94 pg/mL), IL-1α (36.84 ± 3.23; 44.07 ± 4.00 pg/mL) and FFA (128.32 ± 10.94; 148.00 ± 12.12 µmol/L) compared to the blank group (p < 0.05). In vitro experiments identified 75 compounds in QCF decoction, with 27 active compounds absorbed in serum. Network pharmacology identified 6 active components connecting 17 targets. GO enrichment and KEGG pathway analysis indicated that QCF's anti-acne targets mainly regulate extracellular matrix function, inflammatory processes, immune response and endocrine function. CONCLUSIONS: This study provides evidence of the molecular mechanism and material basis of QCF in treating androgen-related damp-heat acne, paving the way for further research on its potential in treating other conditions related to damp-heat constitution.


Assuntos
Experimentação Animal , Masculino , Animais , Cricetinae , Androgênios , Farmacologia em Rede , Cobre
13.
Food Chem Toxicol ; 177: 113831, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182599

RESUMO

Coagulation necrosis is characterized by the denaturation of structural proteins and lysosomal enzymes; its occurrence in myocardium can lead to heart failure. Current studies on myocardial injury primarily focus on inflammation, hypertrophy, and hemorrhage, while those on myocardial coagulation necrosis are still limited. Mesaconitine (MA), a C19 diester diterpenoid alkaloid derived from Aconitum carmichaelii Debx, has strong cardiotoxicity. During this study, the myocardial cells of SD rats showed significant coagulative necrosis after 6 days of oral administration of MA at a dose of 1.2 mg/kg/day. Investigations of its biological mechanism showed abnormal levels of polyunsaturated fatty acids (PUFAs) and Peroxisome proliferator activated receptors Alpha (PPARα) pathway related protein. Moreover, MA affected the PPARα signaling pathway through interactions with proteins such as POR, TFAM and GPD1, indirectly indicating that these above proteins are important targets for blocking myocardial coagulative necrosis. This study thus discusses the effects of the use of cardiotoxic compound, MA, to initiate myocardial coagulative necrosis and its associated toxic mechanisms.


Assuntos
Ácidos Graxos Insaturados , PPAR alfa , Ratos , Animais , PPAR alfa/metabolismo , Ratos Sprague-Dawley , Ácidos Graxos Insaturados/metabolismo , Miocárdio/metabolismo , Proteínas/metabolismo , Necrose/induzido quimicamente , Necrose/metabolismo
14.
Molecules ; 28(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049959

RESUMO

Cerebral ischemic stroke is a common neuron loss disease that is caused by the interruption of the blood supply to the brain. In order to enhance the CIS outcome, both identifying the treatment target of ischemic brain damage in the acute phase and developing effective therapies are urgently needed. Scutellarin had been found to be beneficial to ischemic injuries and has been shown to have potent effects in clinical application on both stroke and myocardial infarction. However, whether scutellarin improves ischemic brain damage in the acute phase remains unknown. In this study, the protective effects of scutellarin on ischemic brain damage in the acute phase (within 12 h) were illustrated. In middle cerebral artery occlusion and reperfusion (MCAO/R) modeling rats, the Z-Longa score was significantly down-regulated by 25% and 23.1%, and the brain infarct size was reduced by 26.95 ± 0.03% and 25.63 ± 0.02% when responding to high-dose and low-dose scutellarin treatments, respectively. H&E and TUNEL staining results indicated that the neuron loss of the ischemic region was improved under scutellarin treatment. In order to investigate the mechanism of scutellarin's effects on ischemic brain damage in the acute phase, changes in proteins and metabolites were analyzed. The suppression of scutellarin on the glutamate-inducing excitatory amino acid toxicity was strongly indicated in the study of both proteomics and metabolomics. A molecular docking experiment presented strong interactions between scutellarin and glutamate receptors, which score much higher than those of memantine. Further, by performing a parallel reaction monitoring-mass spectrometry (PRM-MS) study on both the cortex and hippocampus tissue of the ischemic region, we screened the scutellarin-regulating molecules that are involved in both the release and transportation of neurotransmitters. It was found that the aberrant levels of glutamate receptors, including EAAT2, GRIN1, GRIN2B, and GRM1, as well as of other glutamatergic pathway-involving proteins, including CAMKK2, PSD95, and nNOS, were significantly regulated in the ischemic cortex. In the hippocampus, EAAT2, GRIN1, nNOS, and CAM were significantly regulated. Taken together, scutellarin exerts potent effects on ischemic brain damage in the acute phase by regulating the activity of neurotransmitters and reducing the toxicity of excitatory amino acids in in neurons.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Ratos , Animais , Simulação de Acoplamento Molecular , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Lesões Encefálicas/metabolismo , Neurotransmissores/uso terapêutico , Neurônios/metabolismo , Traumatismo por Reperfusão/metabolismo
15.
Zhongguo Zhong Yao Za Zhi ; 48(1): 71-81, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725260

RESUMO

Wuzhuyu Decoction, the classical formula recorded in the Treatise on Febrile Diseases(Shang Han Lun), has been included in the Catalogue of Ancient Classic Prescriptions(the First Batch). Consisting of Euodiae Fructus, Ginseng Radix et Rhizoma, Zingiberis Rhizoma Recens, and Jujubae Fructus, it is effective in warming the middle, tonifying deficiency, dispelling cold, and descending adverse Qi, and is widely applied clinically with remarkable efficacies. For a classical formula, the chemical composition is the material basis and an important premise for quantity value transfer. This study aimed to establish a rapid identification method of chemical components in Wuzhuyu Decoction by high-resolution mass spectrometry(HR-MS) and molecular network. AQUITY UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 µm) was used for sample separation, and acetonitrile-0.1% formic acid in water was used as mobile phases for gradient elution. Q-Exactive Orbitrap MS data were collected in positive and negative ion modes, and GNPS molecular network was plotted according to the similarity of MS/MS fragmentation modes. Cytoscape 3.6.1 was used to screen molecular clusters with similar structures. Finally, the chemical components of Wuzhuyu Decoction were rapidly identified according to the controls, as well as the information of retention time, accurate relative molecular weight of HR-MS, and MS/MS multistage fragments. A total of 105 chemical components were identified in Wuzhuyu Decoction. This study can provide data for the follow-up quality control, standard substance research, and pharmacodynamic material research on Wuzhuyu Decoction, as well as references for the rapid qualitative analysis of the chemical components of Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Controle de Qualidade
17.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2658-2667, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35718484

RESUMO

This study aims to identify the chemical constituents of Simiao Yong'an Decoction based on ultra-performance liquid chromatography coupled with linear quadrupole ion trap-orbitrap mass spectrometry(UPLC-LTQ-Orbitrap-MS). The elution was performed through a UPLC BEH C_(18) column(2.1 mm × 100 mm, 1.7 µm) with the mobile phase of water(containing 0.1% formic acid)-acetonitrile at a flow rate of 0.4 mL·min~(-1). LTQ-Orbitrap-MS with heat electrospray ion(HESI) source was employed to collect MS fragment information in the negative ion mode. A total of 72 compounds were identified based on reference substance comparison, fragmentation rules, accurate molecular weight, related reports and databases(MassBank and HMDB), including 30 iridoid glycosides, 9 organic acids, 15 flavonoids, 10 phenylpropanoids, 7 triterpenoids, and 1 saccharide. The method established in this study is comprehensive, rapid, and accurate, which can help summarize the fragmentation rules of constituents and provide reference for revealing the active constituents and pharmacodynamic mechanism of Simiao Yong'an Decoction.


Assuntos
Medicamentos de Ervas Chinesas , Triterpenos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Medicamentos de Ervas Chinesas/química , Flavonoides/análise , Triterpenos/análise
18.
Biomed Pharmacother ; 151: 113059, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35561426

RESUMO

BACKGROUND: Stroke could cause long-term disability, even mortality around the world. Recently, Sodium tanshinone IIA sulfonate (STS), identified from Salvia miltiorrhiza Bunge and was found to have unique efficiency in clinical practice as a potential therapeutic agent for ischemic cerebral infarction. However, systematic investigation about the biological mechanism is still lacking. Herein, we utilized high-throughput proteomics approach to identify the underlying targets for the treatment of STS in stroke. METHODS: We investigated the effect of STS on stroke outcomes on rat model of the Middle Cerebral Artery Occlusion and Reperfusion (MCAO/R), assessing by Z-Longa score, infarct volume and HE staining. Pharmacoproteomic profiling of ischemic penumbra in cortical (IPC) was performed using DIA-based label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique. Bioinformatics analysis was processed for further investigation. The expression of core proteins was semi-quantified by DIA, and the major protein correlating with stroke was examined using parallel reaction monitoring (PRM). RESULTS: Rats in the MCAO/R group showed neurological function deterioration, which was improved by STS. There were 423 differentially expressed proteins (DEPs) in IPC being detected and quantified in both the sham group and the MCAO/R group. Meanwhile, 285 proteins were significantly changed in the STS treated group, compared to the MCAO/R model. Protein-protein interaction (PPI) network, pathway and biological function enrichment were processed for the DEPs across each two groups, the results of which were integrated for analysis. Alb, mTOR, Dync1h1, Stxbp1, Cltc, and Sptan1 were contained as the core proteins. Altered molecules were discovered to be enriched in 18 signal pathways such as phosphatidylinositol signaling system, PI3K/AKT signal pathway and HIF-1 signal pathway. The results also showed the correlation with sleep disturbances and depression post-stroke. CONCLUSIONS: We concluded that STS could prevent penumbra from progressively ongoing damage and improve neurological deficits in MCAO/R model rats. The intersected pathways and protein networks predicted by proteomics might provide much more detailed information for the therapeutic mechanisms of STS in the treatment of CIS.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/tratamento farmacológico , Cromatografia Líquida , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fenantrenos , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/tratamento farmacológico , Espectrometria de Massas em Tandem
19.
Ann Transl Med ; 10(5): 263, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35402596

RESUMO

Background: Esophageal cancer responds poorly to conventional radiotherapy, chemotherapy, and/or surgery. Immunotherapy works by boosting the body's immune system, and preoperative immunotherapy combined with chemotherapy may increase the survival rate of patients with esophageal cancer. Here we further explore immunotherapy's role in treating borderline resectable (BR) esophageal squamous cell carcinoma (ESCC) by combining immunotherapy with chemotherapy. Methods: In this multicenter, randomized controlled study of preoperative immunotherapy plus chemotherapy for BR ESCC, immunotherapy plus chemotherapy [i.e., tislelizumab plus albumin-bound paclitaxel (ABP)/cisplatin] will be given according to the inclusion and exclusion criteria. Patients are to be observed and recorded for various indicators, the follow-up visits are standardized, and a database is to be established for the statistical analysis, with an attempt to clarify the value of preoperative immunotherapy plus chemotherapy in improving the survival of patients with BR ESCC. The primary endpoints are disease-free survival (DFS), major pathologic response (MPR), and pathologic complete response (pCR). The secondary endpoints include the objective response rate (ORR) and overall survival (OS) in subjects with PD-L1 expression levels of <1%, ≥1%, ≥20%, and ≥50%. Discussion: The role of preoperative concurrent immunotherapy plus chemotherapy in improving the survival rates of patients with BR ESCC will be explored in this study. Given that the 5-year survival rate of BR ESCC is 10%, we hope that a reasonable immunotherapy plus chemotherapy regimen with higher efficacy and lower toxicity will further increase the pCR. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR2100051514.

20.
Bioengineered ; 13(3): 6895-6907, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35253625

RESUMO

Non-small cell lung cancer (NSCLC) is one of the most malignant tumors. The treatment of advanced NSCLC can be challenging due to drug resistance. The discovery of novel cancer-testis antigens to develop new strategies for advanced metastatic NSCLC is required. AKAP4 is an oncogene discovered in some malignant tumors, and its molecular function of AKAP4 in NSCLC is unknown. This study aimed to explore the potential function of AKAP4 in the development and progression of NSCLC. AKAP-4 was found to be significantly upregulated in both clinical NSCLC tissues and NSCLC cell lines. Cell viability and migration were suppressed, apoptosis was induced, and tube formation was inhibited by the knockdown of AKAP-4, accompanied by the downregulation of VEGF, N-cadherin, EphA2, and MMP-2, and upregulation of c-AMP, PKA, and E-cadherin. In vivo xenograft experiments revealed that tumor growth was inhibited by the knockdown of AKAP4, accompanied by the activation of c-AMP/PKA signaling and inhibition of epithelial-mesenchymal transition progression. Our results show that AKAP4 might be an important target for treating NSCLC because of its function in promoting the migration and proliferation of NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Monofosfato de Adenosina , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Neoplasias Pulmonares/patologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...