Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 49(10): 2871-2887, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39026086

RESUMO

Brain injury caused by stroke has a high rate of mortality and remains a major medical challenge worldwide. In recent years, there has been significant attention given to the use of human Umbilical cord-derived Mesenchymal Stem Cells (hUC-MSCs) for the treatment of stroke in different adult and neonate animal models of stroke. However, using hUC-MSCs by systemic administration to treat ischemic stroke has not been investigated sufficiently. In this study, we conducted various experiments to explore the neuroprotection of hUC-MSCs in rats. Our findings demonstrate that an intravenous injection of a high dose of hUC-MSCs at 2 × 10^7 cells/kg markedly ameliorated brain injury resulting from ischemic stroke. This improvement was observed one day after inducing transient middle cerebral artery occlusion (MCAO) and subsequent reperfusion in rats. Notably, the efficacy of this single administration of hUC-MSCs surpassed that of edaravone, even when the latter was used continuously over three days. Mechanistically, secretory factors derived from hUC-MSCs, such as HGF, BDNF, and TNFR1, ameliorated the levels of MDA and T-SOD to regulate oxidative stress. In particular, TNFR1 also improved the expression of NQO-1 and HO-1, important proteins associated with oxidative stress. More importantly, TNFR1 played a significant role in reducing inflammation by modulating IL-6 levels in the blood. Furthermore, TNFR1 was observed to influence the permeability of the blood-brain barrier (BBB) as demonstrated in the evan's blue experiment and protein expression of ZO-1. This study represented a breakthrough in traditional methods and provided a novel strategy for clinical medication and trials.


Assuntos
AVC Isquêmico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Estresse Oxidativo , Ratos Sprague-Dawley , Cordão Umbilical , Animais , Estresse Oxidativo/fisiologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/citologia , Masculino , AVC Isquêmico/metabolismo , AVC Isquêmico/terapia , Ratos , Inflamação/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas/terapia , Neuroproteção/fisiologia , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/metabolismo
2.
Cell Commun Signal ; 22(1): 383, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075489

RESUMO

BACKGROUND: Acute hypobaric hypoxia-induced brain injury has been a challenge in the health management of mountaineers; therefore, new neuroprotective agents are urgently required. Meldonium, a well-known cardioprotective drug, has been reported to have neuroprotective effects. However, the relevant mechanisms have not been elucidated. We hypothesized that meldonium may play a potentially novel role in hypobaric hypoxia cerebral injury. METHODS: We initially evaluated the neuroprotection efficacy of meldonium against acute hypoxia in mice and primary hippocampal neurons. The potential molecular targets of meldonium were screened using drug-target binding Huprot™ microarray chip and mass spectrometry analyses after which they were validated with surface plasmon resonance (SPR), molecular docking, and pull-down assay. The functional effects of such binding were explored through gene knockdown and overexpression. RESULTS: The study clearly shows that pretreatment with meldonium rapidly attenuates neuronal pathological damage, cerebral blood flow changes, and mitochondrial damage and its cascade response to oxidative stress injury, thereby improving survival rates in mice brain and primary hippocampal neurons, revealing the remarkable pharmacological efficacy of meldonium in acute high-altitude brain injury. On the one hand, we confirmed that meldonium directly interacts with phosphoglycerate kinase 1 (PGK1) to promote its activity, which improved glycolysis and pyruvate metabolism to promote ATP production. On the other hand, meldonium also ameliorates mitochondrial damage by PGK1 translocating to mitochondria under acute hypoxia to regulate the activity of TNF receptor-associated protein 1 (TRAP1) molecular chaperones. CONCLUSION: These results further explain the mechanism of meldonium as an energy optimizer and provide a strategy for preventing acute hypobaric hypoxia brain injury at high altitudes.


Assuntos
Lesões Encefálicas , Fosfoglicerato Quinase , Animais , Fosfoglicerato Quinase/metabolismo , Fosfoglicerato Quinase/genética , Camundongos , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/metabolismo , Hipóxia/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
3.
Front Pharmacol ; 13: 863451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450040

RESUMO

Hypoxic environments at high altitudes influence the long-term non-altitude health of residents, by inducing changes in metabolism and the mitochondria, severe lung injury, and endangering life. This study was aimed to determine whether meldonium can ameliorate hypoxia-induced lung injury and investigate its possible molecular mechanisms. We used Swiss mice and exposed type Ⅱ alveolar epithelial cell to hypobaric hypoxic conditions to induce lung injury and found that meldonium has significant preventive effect, which was associated with the regulation of glycolysis. We found using human proteome microarrays assay, molecular docking, immunofluorescence and pull-down assay that the target protein of meldonium is a platelet-type phosphofructokinase (PFKP), which is a rate-limiting enzyme of glycolysis. Also, meldonium promotes the transfer of nuclear factor erythroid 2-related factor 2 (Nrf2) from the cytoplasm to the nucleus, which mitigates oxidative stress and mitochondrial damage under hypoxic condition. Mechanistically, meldonium ameliorates lung injury by targeting PFKP to regulate glycolysis, which promotes Nrf2 translocation from the cytoplasm to the nucleus to alleviate oxidative stress and mitochondrial damage under hypoxic condition. Our study provides a novel potential prevention and treatment strategy against hypoxia-induced lung injury.

4.
Eur J Pharmacol ; 910: 174443, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34464604

RESUMO

Rotigotine-loaded microspheres (RoMS), a sustained-release formulation with a continuous release of rotigotine for more than 7 days in vivo, have been conducted a clinical trial for the treatment of Parkinson's disease (PD). Previous work from our laboratory showed that RoMS exerted an antinociceptive effect in rat models of inflammatory pain. The purpose of this study was to investigate the mechanisms of action underlying the antinociceptive effect of RoMS. A rat model of inflammatory pain was prepared by an intraplantar injection of carrageenan. The hot plate test and the Randall-Selitto test were used to evaluate the effect of domperidone (selective D2 receptor antagonist), D2D3 shRNA, and naloxone (nonselective opioid receptor antagonist) on RoMS-mediated antinociceptive efficacy. The expressions of D2 and D3 receptors in the striatum and periaqueductal gray were measured by Western blotting. Intracerebroventricular injection of domperidone abated the antinociceptive effect of RoMS. However, intraperitoneal injection of domperidone had no significant effect on the antinociceptive action of RoMS. Intracerebroventricular injection with D2D3 shRNA significantly attenuated the expressions of D2 and D3 receptors in the striatum and the periaqueductal gray. D2 and D3 receptors silence significantly weakened RoMS-mediated antinociceptive effect. Intracerebroventricular injection of naloxone also alleviated the antinociceptive effect of RoMS. The results suggest that RoMS-mediated antinociceptive efficacy is associated with activating central dopamine D2 and D3 receptors. Opioid receptors play a role in the antinociceptive effect of RoMS.


Assuntos
Analgésicos/farmacologia , Dopaminérgicos/farmacologia , Dopamina/metabolismo , Microesferas , Dor/tratamento farmacológico , Tetra-Hidronaftalenos/farmacologia , Tiofenos/farmacologia , Analgésicos/administração & dosagem , Animais , Carragenina/toxicidade , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Domperidona/administração & dosagem , Domperidona/farmacologia , Dopaminérgicos/administração & dosagem , Antagonistas dos Receptores de Dopamina D2/administração & dosagem , Antagonistas dos Receptores de Dopamina D2/farmacologia , Inflamação/tratamento farmacológico , Inflamação/etiologia , Injeções , Masculino , Naloxona/administração & dosagem , Naloxona/farmacologia , Antagonistas de Entorpecentes/administração & dosagem , Antagonistas de Entorpecentes/farmacologia , Dor/etiologia , Substância Cinzenta Periaquedutal/metabolismo , Ratos Sprague-Dawley , Receptores de Dopamina D2/genética , Receptores de Dopamina D3/genética , Estresse Mecânico , Temperatura , Tetra-Hidronaftalenos/administração & dosagem , Tiofenos/administração & dosagem
5.
Gene ; 757: 144940, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32640303

RESUMO

OBJECTIVE: We sought to analyze the association between miR-146a rs2910164 G > C polymorphism and susceptibility to lung cancer using a meta-analysis of case-control studies. METHODS: We systematically searched for studies reporting on the relationship between miR-146a rs2910164 polymorphism and the risk of lung cancer in PubMed, Embase, Web of Science and Chinese National Knowledge Infrastructure databases. We then calculated pooled odds ratios (ORs), at 95% confidence interval (CI) to assess the aforementioned relationship. All the data were analyzed using statistical packages implemented in R version 3.6.2 (R Project for Statistical Computing), run in RStudio version 1.2.5033. RESULTS: A total of fifteen studies, comprising 6506 cases and 6576 controls, were enrolled in this meta-analysis. Significant associations were observed between miR-146a rs2910164 polymorphism and the risk of lung cancer based on overall pooled subjects under the allele, heterozygous, homozygous, dominant, and recessive genetic models (C vs. G: OR = 1.27, 95% CI: 1.12-1.44; GC vs. GG: OR = 1.23, 95% CI: 1.03-1.46; CC vs. GG: OR = 1.51, 95% CI: 1.18-1.93; GC + CC vs. GG: OR = 1.33, 95% CI: 1.10-1.61; CC vs. GG + GC: OR = 1.32, 95% CI: 1.13-1.53). Ethnicity-based subgroup analyses revealed no statistically significant differences in Asians using heterozygous and dominant genetic models. CONCLUSION: miR-146a rs2910164 G > C polymorphism may be a risk factor of lung cancer. Asian populations exhibiting heterozygous and dominant genotypes need to be further investigated to validate our findings.


Assuntos
Neoplasias Pulmonares/genética , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Povo Asiático/genética , Genes Dominantes , Heterozigoto , Humanos , Neoplasias Pulmonares/etnologia , População Branca/genética
6.
ACS Appl Mater Interfaces ; 10(25): 21672-21680, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29812896

RESUMO

In this study, superlight adsorbent sponges (bulk density 0.016-0.049 g·cm-3) were developed based on graphene oxide (GO) cross-linked with poly(vinyl alcohol) (PVA). The interlayer spacing of the GO nanosheets was increased by the insertion of PVA, and good mechanical integrity was attained by the cross-linked structure. They showed excellent continuous flow adsorption capacity (CFAC) when methylene blue (MB) was used as a model contaminant; a water flux of 396 L·m-2·h-1 through a 2 cm thick adsorbent sponge was achieved at a hydraulic head of only 10 cm water, with an almost complete retention of MB. They corresponded to a water permeability of 4.0 × 105 L·m-2·h-1·MPa-1, which was several orders of magnitudes higher than GO-based membranes for similar applications reported in the literature. The GO nanosheets were completely immobilized in the sponge by cross-linking with PVA, and thus, there was no GO nanoparticle leaching or flushing out into the treated permeate water, which was another advantage over direct use of GO powders in water treatment. Because of the high water permeability and CFAC, the cross-linked GO/PVA sponges have a great potential for wastewater treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...