RESUMO
BACKGROUND: Environmental stresses, including high salinity and drought, severely diminish wheat yield and quality globally. The xyloglucan endotransglucosylase/hydrolase (XTH) family represents a class of cell wall-modifying enzymes and plays important roles in plants growth, development and stress adaptation. However, systematic analyses of XTH family genes and their functions under salt and drought stresses have not been undertaken in wheat. RESULTS: In this study, we identified a total of 135 XTH genes in wheat, which were clustered into three evolutionary groups. These TaXTHs were unevenly distributed on 21 chromosomes of wheat with a majority of TaXTHs located on homelogous groups 2, 3 and 7. Gene duplication analysis revealed that segmental and tandem duplication were the main reasons for the expansion of XTH family in wheat. Interaction network predictions indicated that TaXTHs could interact with multiple proteins, including three kinases, one methyltransferase and one gibberellin-regulated protein. The promoters of the TaXTH genes harbored various cis-acting elements related to stress and hormone responses. RNA-seq data analyses showed that some TaXTH genes were induced by salt and drought stresses. Furthermore, we verified that TaXTH17 was induced by abiotic stresses and phytohormone treatments, and demonstrated that TaXTH17 was localized in the secretory pathway and cell wall. Functional analyses conducted in heterologous expression systems and in wheat established that TaXTH17 plays a negative role in plant resistance to salt and drought. CONCLUSIONS: We identified 135 XTH genes in wheat and conducted comprehensive analyses of their phylogenetic relationships, gene structures, conserved motifs, gene duplication events, chromosome locations, interaction networks, cis-acting elements and gene expression patterns. Furthermore, we provided solid evidence supporting the notion that TaXTH17 plays a negative role in plant resistance to salt and drought stresses. Collectively, our results provide valuable insights into understanding wheat XTHs, particularly their involvement in plant stress responses, and establish a foundation for further functional and mechanistic studies of TaXTHs.
Assuntos
Glicosiltransferases , Família Multigênica , Estresse Fisiológico , Triticum , Triticum/genética , Triticum/enzimologia , Triticum/fisiologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Genes de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Duplicação GênicaRESUMO
The predominant genetic defense mechanism against soybean cyst nematode (SCN) in 95% of the North America market is under threat by virulent SCN populations. Usovsky et al. identified GmSNAP02 as an SCN susceptibility gene through fine-mapping of unique bi-parental populations. Loss-of-function of GmSNAP02 confers enhanced resistance to more virulent SCN.
Assuntos
Resistência à Doença , Glycine max , Doenças das Plantas , Tylenchoidea , Animais , Glycine max/genética , Glycine max/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Tylenchoidea/fisiologia , Nematoides/fisiologia , Nematoides/genéticaRESUMO
Thiamine functions as a crucial activator modulating plant health and broad-spectrum stress tolerances. However, the role of thiamine in regulating plant virus infection is largely unknown. Here, we report that the multifunctional 17K protein encoded by barley yellow dwarf virus-GAV (BYDV-GAV) interacted with barley pyrimidine synthase (HvTHIC), a key enzyme in thiamine biosynthesis. HvTHIC was found to be localized in chloroplast via an N-terminal 74-amino acid domain. However, the 17K-HvTHIC interaction restricted HvTHIC targeting to chloroplasts and triggered autophagy-mediated HvTHIC degradation. Upon BYDV-GAV infection, the expression of the HvTHIC gene was significantly induced, and this was accompanied by accumulation of thiamine and salicylic acid. Silencing of HvTHIC expression promoted BYDV-GAV accumulation. Transcriptomic analysis of HvTHIC silenced and non-silenced barley plants showed that the differentially expressed genes were mainly involved in plant-pathogen interaction, plant hormone signal induction, phenylpropanoid biosynthesis, starch and sucrose metabolism, photosynthesis-antenna protein, and MAPK signaling pathway. Thiamine treatment enhanced barley resistance to BYDV-GAV. Taken together, our findings reveal a molecular mechanism underlying how BYDV impedes thiamine biosynthesis to uphold viral infection in plants.
Assuntos
Hordeum , Doenças das Plantas , Proteínas de Plantas , Tiamina , Hordeum/virologia , Hordeum/genética , Hordeum/metabolismo , Tiamina/metabolismo , Tiamina/biossíntese , Doenças das Plantas/virologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Luteovirus/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas Virais/metabolismo , Proteínas Virais/genética , Cloroplastos/metabolismo , Ácido Salicílico/metabolismo , Interações Hospedeiro-Patógeno , Resistência à Doença/genéticaRESUMO
Wheat is one of the most important food crops, both in China and worldwide. Wheat production is facing extreme stresses posed by different diseases, including Fusarium head blight (FHB), which has recently become an increasingly serious concerns. FHB is one of the most significant and destructive diseases affecting wheat crops all over the world. Recent advancements in genomic tools provide a new avenue for the study of virulence factors in relation to the host plants. The current review focuses on recent progress in the study of different strains of Fusarium infection. The presence of genome-wide repeat-induced point (RIP) mutations causes genomic mutations, eventually leading to host plant susceptibility against Fusarium invasion. Furthermore, effector proteins disrupt the host plant resistance mechanism. In this study, we proposed systematic modification of the host genome using modern biological tools to facilitate plant resistance against foreign invasion. We also suggested a number of scientific strategies, such as gene cloning, developing more powerful functional markers, and using haplotype marker-assisted selection, to further improve FHB resistance and associated breeding methods.
RESUMO
Copine proteins are highly conserved and ubiquitously found in eukaryotes, and their indispensable roles in different species were proposed. However, their exact function remains unclear. The phytohormone brassinosteroids (BRs) play vital roles in plant growth, development and environmental responses. A key event in effective BR signaling is the formation of functional BRI1-SERK receptor complex and subsequent transphosphorylation upon ligand binding. Here, we demonstrate that BONZAI (BON) proteins, which are plasma membrane-associated copine proteins, are critical components of BR signaling in both the monocot maize and the dicot Arabidopsis. Biochemical and molecular analyses reveal that BON proteins directly interact with SERK kinases, thereby ensuring effective BRI1-SERK interaction and transphosphorylation. This study advances the knowledge on BR signaling and provides an important target for optimizing valuable agronomic traits, it also opens a way to study steroid hormone signaling and copine proteins of eukaryotes in a broader perspective.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana/metabolismoRESUMO
The compact CRISPR/CasΦ2 system provides a complementary genome engineering tool for efficient gene editing including cytosine and adenosine base editing in wheat and rye with high specificity, efficient use of the protospacer-adjacent motif TTN, and an alternative base-editing window.
Assuntos
Edição de Genes , Triticum , Triticum/genética , Sistemas CRISPR-Cas/genética , Secale/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente EspaçadasRESUMO
Achieving high yield and good quality in crops is essential for human food security and health. However, there is usually disharmony between yield and quality. Seed storage protein (SSP) and starch, the predominant components in cereal grains, determine yield and quality, and their coupled synthesis causes a yield-quality trade-off. Therefore, dissection of the underlying regulatory mechanism facilitates simultaneous improvement of yield and quality. Here, we summarize current findings about the synergistic molecular machinery underpinning SSP and starch synthesis in the leading staple cereal crops, including maize, rice and wheat. We further evaluate the functional conservation and differentiation of key regulators and specify feasible research approaches to identify additional regulators and expand insights. We also present major strategies to leverage resultant information for simultaneous improvement of yield and quality by molecular breeding. Finally, future perspectives on major challenges are proposed.
Assuntos
Grão Comestível , Amido , Humanos , Grão Comestível/metabolismo , Amido/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Proteínas de Plantas/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismoRESUMO
Despite many years of research, the molecular mechanisms underlying the activation and regulation of host plant resistance (HPR) to insects remain elusive. Recently, Guo et al. reported that a nucleotide-binding leucine-rich repeat NLR protein activates HPR through direct recognition of an insect effector and that autophagy-mediated degradation of this effector negatively regulates HPR.
Assuntos
Proteínas NLR , Plantas , Plantas/genética , Plantas/metabolismo , Proteínas NLR/metabolismo , Imunidade Vegetal/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença/genéticaRESUMO
Barley yellow dwarf viruses (BYDVs) cause widespread damage to global cereal crops. Here we report a novel strategy for elevating resistance to BYDV infection. The 17K protein, a potent virulence factor conserved in BYDVs, interacted with barley IMP-α1 and -α2 proteins that are nuclear transport receptors. Consistently, a nuclear localization signal was predicted in 17K, which was found essential for 17K to be transported into the nucleus and to interact with IMP-α1 and -α2. Reducing HvIMP-α1 and -α2 expression by gene silencing attenuated BYDV-elicited dwarfism, accompanied by a lowered nuclear accumulation of 17K. Among the eight common wheat CRISPR mutants with two to four TaIMP-α1 and -α2 genes mutated, the triple mutant α1aaBBDD /α2AAbbdd and the tetra-mutant α1aabbdd /α2AAbbDD displayed strong BYDV resistance without negative effects on plant growth under field conditions. The BYDV resistance exhibited by α1aaBBDD /α2AAbbdd and α1aabbdd /α2AAbbDD was correlated with decreased nuclear accumulation of 17K and lowered viral proliferation in infected plants. Our work uncovers the function of host IMP-α proteins in BYDV pathogenesis and generates the germplasm valuable for breeding BYDV-resistant wheat. Appropriate reduction of IMP-α gene expression may be broadly useful for enhancing antiviral resistance in agricultural crops and other economically important organisms.
Assuntos
Luteovirus , Triticum , Triticum/genética , alfa Carioferinas/genética , Resistência à Doença/genética , Melhoramento Vegetal , Luteovirus/genética , Produtos Agrícolas/genética , Expressão Gênica , Doenças das Plantas/genéticaRESUMO
Plants undergo translational reprogramming when they are under attack by pathogens. Xiang et al. recently revealed that plant helicases induced by pathogen recognition unwind RNA hairpins upstream of the main open reading frames (mORFs), thus allowing ribosomes to bypass the upstream ORFs (uORFs) and translate downstream defense proteins, a mechanism that is also found in mammals.
Assuntos
Proteínas de Plantas , Biossíntese de Proteínas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ribossomos/metabolismo , RNA/metabolismo , DNA Helicases/metabolismo , Fases de Leitura AbertaRESUMO
BACKGROUND: Crops are constantly attacked by various pathogens. These pathogenic microorganisms, such as fungi, oomycetes, bacteria, viruses, and nematodes, threaten global food security by causing detrimental crop diseases that generate tremendous quality and yield losses worldwide. Chemical pesticides have undoubtedly reduced crop damage; however, in addition to increasing the cost of agricultural production, the extensive use of chemical pesticides comes with environmental and social costs. Therefore, it is necessary to vigorously develop sustainable disease prevention and control strategies to promote the transition from traditional chemical control to modern green technologies. Plants possess sophisticated and efficient defense mechanisms against a wide range of pathogens naturally. Immune induction technology based on plant immunity inducers can prime plant defense mechanisms and greatly decrease the occurrence and severity of plant diseases. Reducing the use of agrochemicals is an effective way to minimize environmental pollution and promote agricultural safety. AIM OF REVIEW: The purpose of this workis to offer valuable insights into the current understanding and future research perspectives of plant immunity inducers and their uses in plant disease control, ecological and environmental protection, and sustainable development of agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW: In this work, we have introduced the concepts of sustainable and environment-friendly concepts of green disease prevention and control technologies based on plant immunity inducers. This article comprehensively summarizes these recent advances, emphasizes the importance of sustainable disease prevention and control technologies for food security, and highlights the diverse functions of plant immunity inducers-mediated disease resistance. The challenges encountered in the potential applications of plant immunity inducers and future research orientation are also discussed.
Assuntos
Praguicidas , Imunidade Vegetal , Produtos Agrícolas , Resistência à Doença , Doenças das Plantas/prevenção & controleRESUMO
Despite recent progress in crop genomics studies, the genomic changes brought about by modern breeding selection are still poorly understood, thus hampering genomics-assisted breeding, especially in polyploid crops with compound genomes such as common wheat (Triticum aestivum). In this work, we constructed genome resources for the modern elite common wheat variety Aikang 58 (AK58). Comparative genomics between AK58 and the landrace cultivar Chinese Spring (CS) shed light on genomic changes that occurred through recent varietal improvement. We also explored subgenome diploidization and divergence in common wheat and developed a homoeologous locus-based genome-wide association study (HGWAS) approach, which was more effective than single homoeolog-based GWAS in unraveling agronomic trait-associated loci. A total of 123 major HGWAS loci were detected using a genetic population derived from AK58 and CS. Elite homoeologous haplotypes (HHs), formed by combinations of subgenomic homoeologs of the associated loci, were found in both parents and progeny, and many could substantially improve wheat yield and related traits. We built a website where users can download genome assembly sequence and annotation data for AK58, perform blast analysis, and run JBrowse. Our work enriches genome resources for wheat, provides new insights into genomic changes during modern wheat improvement, and suggests that efficient mining of elite HHs can make a substantial contribution to genomics-assisted breeding in common wheat and other polyploid crops.
Assuntos
Pão , Triticum , Triticum/genética , Haplótipos/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Poliploidia , Genoma de Planta/genéticaRESUMO
Plant-parasitic nematodes (PPNs) pose a serious threat to world crop production and global food security. However, our understanding of the molecular mechanisms underlying plant defense against PPNs remains very limited. Recently, Zou et al. reported that the interplay between autophagy and jasmonate pathways mediates plant immunity against root-knot nematodes.