Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(26): 33360-33370, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888395

RESUMO

The large open circuit voltage (VOC) loss and phase segregation are two main obstacles hindering the development of wide-bandgap perovskite solar cells (PSCs). Even though substantial progress has been made through crystallization regulation and surface modification on perovskite, the mechanism of VOC loss and phase segregation has rarely been studied. In this paper, we first investigate the halide ions distribution along the out-of-plane direction and find the initial inhomogeneous distribution of halide ions during the crystallization process is an important reason. It leads to the formation of an unfavorable potential well in PSCs, resulting in VOC loss as well as generation of strong strain exacerbating phase segregation. Through introducing melatonin (MT) into perovskite precursors, a homogeneous distribution of halide anions is realized due to the well-regulated crystallization. Consequently, the treated PSCs exhibit an optimized power conversion efficiency (PCE) of 22.88% with a VOC loss as low as 0.38 V, which are the best values for wide-bandgap PSCs up to now.

2.
Int J Immunopathol Pharmacol ; 37: 3946320231211795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942552

RESUMO

BACKGROUND: The TP53 gene is estimated to be mutated in over 50% of tumors, with the majority of tumors exhibiting abnormal TP53 signaling pathways. However, the exploration of TP53 mutation-related LncRNAs in Hepatocellular carcinoma (HCC) remains incomplete. This study aims to identify such LncRNAs and enhance the prognostic accuracy for Hepatoma patients. MATERIAL AND METHODS: Differential gene expression was identified using the "limma" package in R. Prognosis-related LncRNAs were identified via univariate Cox regression analysis, while a prognostic model was crafted using multivariate Cox regression analysis. Survival analysis was conducted using Kaplan-Meier curves. The precision of the prognostic model was assessed through ROC analysis. Subsequently, the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm were executed on the TCGA dataset via the TIDE database. Fractions of 24 types of immune cell infiltration were obtained from NCI Cancer Research Data Commons using deconvolution techniques. The protein expression levels encoded by specific genes were obtained through the TPCA database. RESULTS: In this research, we have identified 85 LncRNAs associated with TP53 mutations and developed a corresponding signature referred to as TP53MLncSig. Kaplan-Meier analysis revealed a lower 3-year survival rate in high-risk patients (46.9%) compared to low-risk patients (74.2%). The accuracy of the prognostic TP53MLncSig was further evaluated by calculating the area under the ROC curve. The analysis yielded a 5-year ROC score of 0.793, confirming its effectiveness. Furthermore, a higher score for TP53MLncSig was found to be associated with an increased response rate to immune checkpoint blocker (ICB) therapy (p = .005). Patients possessing high-risk classification exhibited lower levels of P53 protein expression and higher levels of genomic instability. CONCLUSION: The present study aimed to identify and validate LncRNAs associated with TP53 mutations. We constructed a prognostic model that can predict chemosensitivity and response to ICB therapy in HCC patients. This novel approach sheds light on the role of LncRNAs in TP53 mutation and provides valuable resources for analyzing patient prognosis and treatment selection.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Proteína Supressora de Tumor p53/genética , RNA Longo não Codificante/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Prognóstico , Mutação/genética
3.
Nanomaterials (Basel) ; 13(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37299654

RESUMO

Photovoltaics are being transformed by perovskite solar cells. The power conversion efficiency of these solar cells has increased significantly, and even higher efficiencies are possible. The scientific community has gained much attention due to perovskites' potential. Herein, the electron-only devices were prepared by spin-coating and introducing the organic molecule dibenzo-18-crown-6 (DC) to CsPbI2Br perovskite precursor solution. The current-voltage (I-V) and J-V curves were measured. The morphologies and elemental composition information of the samples were obtained by SEM, XRD, XPS, Raman, and photoluminescence (PL) spectroscopies. The distinct impact of organic DC molecules on the phase, morphology, and optical properties of perovskite films are examined and interpreted with experimental results. The efficiency of the photovoltaic device in the control group is 9.76%, and the device efficiency gradually increases with the increase of DC concentration. When the concentration is 0.3%, the device efficiency is the best, reaching 11.57%, short-circuit current is 14.01 mA/cm2, the open circuit voltage is 1.19 V, and the fill factor is 0.7. The presence of DC molecules effectively controlled the perovskite crystallization process by inhibiting the in-situ generations of impurity phases and minimizing the defect density of the film.

4.
ACS Omega ; 4(22): 19641-19646, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31788594

RESUMO

Metal halide perovskites exhibit small exciton binding energy, which leads to a low electron-hole capture rate for radiative recombination and accordingly decreases the luminescence efficiency. Reducing the thickness of the perovskite film or the size of the perovskite crystal is found to be an effective method to spatially confine the electrons and holes to promote the bimolecular radiative recombination. Here, we fabricate CsPbBr3/Cs4PbBr6 nanocomposites, applicable for light emission diodes, by a simple self-assembly method. We effectively reduce the critical size of the CsPbBr3 nanocrystals in the CsPbBr3/Cs4PbBr6 nanocomposites by adding a certain amount of dimethyl sulfoxide into the perovskite precursor solution. Accordingly, the photoluminescence quantum yield of the CsPbBr3/Cs4PbBr6 nanocomposites increased from 56 to 91% due to the quantum size effect. In situ observation of the growth of CsPbBr3/Cs4PbBr6 nanocomposites reveals that the reduction of the CsPbBr3 crystal size is due to the change of the chemical reaction speed during the two-step growth process of the CsPbBr3/Cs4PbBr6 nanocomposites.

5.
Materials (Basel) ; 11(5)2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29724066

RESUMO

The perovskite CsPbBr3 attracts great attention due to its potential in optoelectronics. However, stability remains a major obstacle to achieving its effecting application. In this work, we prepared CsPbBr3 solids through a simple reaction and investigated reversible conversion between CsPbBr3, Cs4PbBr6, and CsPb2Br5. We found that CsPbBr3 can be respectively converted to Cs4PbBr6 or CsPb2Br5 by reacting with CsBr or PbBr2. Thermodynamic analysis demonstrated that the chemical reactions above were exothermic and occurred spontaneously. Moreover, the formed Cs4PbBr6 could be converted to CsPbBr3 reversely, and then progressively converted to Cs-deficient CsPb2Br5 by extraction of CsBr with water. The CsPb2Br5 was converted to CsPbBr3 reversely under thermal annealing at 400 °C. The thermodynamic processes of these conversions between the three compounds above were clarified. Our findings regarding the conversions not only provide a new method for controlled synthesis of the ternary Cs-Pb-Br materials but also clarify the underlying mechanism for the instability of perovskites CsPbBr3.

6.
Materials (Basel) ; 11(5)2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751646

RESUMO

Perovskite solar cells have attracted great attention in recent years, due to their high conversion efficiency and solution-processable fabrication. However, most of the solar cells with high efficiency in the literature are prepared employing TiO2 as electron transport material, which needs sintering at a temperature higher than 450 °C, and is not applicable to flexible device and low-cost fabrication. Herein, the MAPbI3 perovskite solar cells are fabricated at a low temperature of 150 °C with SnO2 as the electron transport layer. By dropping the antisolvent of ethyl acetate onto the perovskite precursor films during the spin coating process, compact MAPbI3 films without pinholes are obtained. The addition of ethyl acetate is found to play an important role in regulating the nucleation, which subsequently improves the compactness of the film. The quality of MAPbI3 films are further improved significantly through Ostwald recrystallization by optimizing the thermal treatment. The crystallinity is enhanced, the grain size is enlarged, and the defect density is reduced. Accordingly, the prepared MAPbI3 perovskite solar cell exhibits a record-high conversion efficiency, outstanding reproducibility, and stability, owing to the reduced electron recombination. The average and best efficiency reaches 19.2% and 20.3%, respectively. The device without encapsulation maintains 94% of the original efficiency after storage in ambient air for 600 h.

7.
J Nanosci Nanotechnol ; 16(1): 797-801, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27398525

RESUMO

TiO2/P3HT hybrid solar cells were fabricated by infiltrating P3HT into the pores of TiO2 nanowire arrays. CdS quantum dot and pyridine were employed to modify the interface of TiO2/P3HT before P3HT was coated. The results show that the interface treatment significantly enhanced the photovoltaic performance of the cell. However characterization of time-resolved photoluminescence, open-circuit voltage decay and transmission electron microscope analysis revealed that the underlying mechanism was different for the organic and inorganic interface modifications. Pyridine plays an important role in assisting the charge separation at the TiO2/P3HT interface, and suppressing electron back recombination. The reason for CdS modifying the cell in this way is mainly due to the suppression of electron back recombination, and the additional photovoltaic effect generated by CdS itself.

8.
J Phys Chem B ; 110(46): 23211-4, 2006 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17107167

RESUMO

Novel hollow ZnO microstructures and ZnO microberets (ZMBs) with nanowires grown vertically on both the inner and outer surfaces of beret shells were synthesized on Si(100) substrates by simple thermal evaporation of pure zinc powder without any catalyst or template material at a relative low temperature of 490 degrees C. XRD, SAED, and HRTEM patterns show that the nanowires and shells of ZMBs are single-crystalline wurtzite structures. The growth mechanism of ZMBs is discussed in detail. The formation of these hollow microstructures depends on the optimum starting time of air introduction. It is a good way to grow well-aligned nanowires by using a nanoscale rough ZnO surface to realize a "self-catalyzed" vapor-liquid-solid process. The photoluminescence spectrum reveals a strong green emission related to the high surface-to-volume ratio of ZMBs. These types of special hollow high surface area structural ZMBs may find potential applications in functional architectural composite materials, solar cell photoanodes, and nanooptoelectronic devices.


Assuntos
Nanotecnologia , Nanofios/química , Nanofios/ultraestrutura , Óxido de Zinco/química , Catálise , Temperatura Baixa , Cristalização , Luminescência , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Silício/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...