Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Curr Opin Biotechnol ; 88: 103166, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38941865

RESUMO

Biofabrication technologies hold the potential to provide high-throughput, easy-to-operate, and cost-effective systems that recapitulate complexities of the native heart. The size of the fabricated model, printing resolution, biocompatibility, and ease-of-fabrication are some of the major parameters that can be improved to develop more sophisticated cardiac models. Here, we review recent cardiac engineering technologies ranging from microscaled organoids, millimeter-scaled heart-on-a-chip platforms, in vitro ventricle models sized to the fetal heart, larger cardiac patches seeded with billions of cells, and associated biofabrication technologies used to produce these models. Finally, advancements that facilitate model translation are discussed, such as their application as carriers for bioactive components and cells in vivo or their capability for drug testing and disease modeling in vitro.

2.
Cell Rep Med ; 5(5): 101520, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38642550

RESUMO

Pathogenic variants in MYH7 and MYBPC3 account for the majority of hypertrophic cardiomyopathy (HCM). Targeted drugs like myosin ATPase inhibitors have not been evaluated in children. We generate patient and variant-corrected iPSC-cardiomyocytes (CMs) from pediatric HCM patients harboring single variants in MYH7 (V606M; R453C), MYBPC3 (G148R) or digenic variants (MYBPC3 P955fs, TNNI3 A157V). We also generate CMs harboring MYBPC3 mono- and biallelic variants using CRISPR editing of a healthy control. Compared with isogenic and healthy controls, variant-positive CMs show sarcomere disorganization, higher contractility, calcium transients, and ATPase activity. However, only MYH7 and biallelic MYBPC3 variant-positive CMs show stronger myosin-actin binding. Targeted myosin ATPase inhibitors show complete rescue of the phenotype in variant-positive CMs and in cardiac Biowires to mirror isogenic controls. The response is superior to verapamil or metoprolol. Myosin inhibitors can be effective in genotypically diverse HCM highlighting the need for myosin inhibitor drug trials in pediatric HCM.


Assuntos
Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Cadeias Pesadas de Miosina , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Criança , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Genótipo , Miosinas/metabolismo , Miosinas/genética , Masculino , Feminino , Sarcômeros/metabolismo , Sarcômeros/genética
3.
Adv Funct Mater ; 30(48)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33692660

RESUMO

Tumor progression relies heavily on the interaction between the neoplastic epithelial cells and their surrounding stromal partners. This cell cross-talk affects stromal development, and ultimately the heterogeneity impacts drug efflux and efficacy. To mimic this evolving paradigm, we have micro-engineered a three-dimensional (3D) vascularized pancreatic adenocarcinoma tissue in a tri-culture system composed of patient derived pancreatic organoids, primary human fibroblasts and endothelial cells on a perfusable InVADE platform situated in a 96-well plate. Uniquely, through synergistic engineering we combined the benefits of cellular fidelity of patient tumor derived organoids with the addressability of a plastic organ-on-a-chip platform. Validation of this platform included demonstrating the growth of pancreatic tumor organoids by monitoring the change in metabolic activity of the tissue. Investigation of tumor microenvironmental behavior highlighted the role of fibroblasts in symbiosis with patient organoid cells, resulting in a six-fold increase of collagen deposition and a corresponding increase in tissue stiffness in comparison to fibroblast free controls. The value of a perfusable vascular network was evident in drug screening, as perfusion of gemcitabine into a stiffened matrix did not show the dose-dependent effects on tumor viability as those under static conditions. These findings demonstrate the importance of studying the dynamic synergistic relationship between patient cells with stromal fibroblasts, in a 3D perfused vascular network, to accurately understand and recapitulate the tumor microenvironment.

4.
Matrix Biol ; 85-86: 189-204, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981898

RESUMO

Organ-on-a-chip systems have the potential to revolutionize drug screening and disease modeling through the use of human stem cell-derived cardiomyocytes. The predictive power of these tissue models critically depends on the functional assembly and maturation of human cells that are used as building blocks for organ-on-a-chip systems. To resemble a more adult-like phenotype on these heart-on-a-chip systems, the surrounding micro-environment of individual cardiomyocyte needs to be controlled. Herein, we investigated the impact of four microenvironmental cues: cell seeding density, types and percentages of non-myocyte populations, the types of hydrogels used for tissue inoculation and the electrical conditioning regimes on the structural and functional assembly of human pluripotent stem cell-derived cardiac tissues. Utilizing a novel, plastic and open-access heart-on-a-chip system that is capable of continuous non-invasive monitoring of tissue contractions, we were able to study how different micro-environmental cues affect the assembly of the cardiomyocytes into a functional cardiac tissue. We have defined conditions that resulted in tissues exhibiting hallmarks of the mature human myocardium, such as positive force-frequency relationship and post-rest potentiation.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Miocárdio/citologia , Técnicas de Cultura de Órgãos/métodos , Diferenciação Celular , Linhagem Celular , Humanos , Dispositivos Lab-On-A-Chip , Engenharia Tecidual , Alicerces Teciduais
5.
J Cardiovasc Pharmacol ; 60(2): 110-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22343372

RESUMO

Autophagy constitutes a catabolic process involving lysosomal degradation of damaged and redundant cytosolic components into biomolecules, via an elaborate lysosomal pathway. Autophagy is a highly regulated and evolutionary conserved process crucial for normal tissue homeostasis and cell life. Certain members of the Bcl-2 gene family, including the BH3 only protein Bnip3 regulate autophagy during cardiac stress during ischemic or hypoxic injury as means of discarding damaged mitochondria and organelles to avert cell death. Defects in the regulation of autophagy have been associated with a number of human pathologies including cancer, neurodegenerative diseases, and heart failure. Here, we discuss the molecular regulation of autophagy in the heart and cellular demise from "too much a good thing."


Assuntos
Autofagia , Insuficiência Cardíaca/patologia , Miocárdio/patologia , Animais , Apoptose , Insuficiência Cardíaca/metabolismo , Humanos , Lisossomos/metabolismo , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...