Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 24(1): 204, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789949

RESUMO

PURPOSE: This study aimed to evaluate the potential of astragalus polysaccharide (APS) pretreatment in enhancing the homing and anti-peritoneal fibrosis capabilities of bone marrow mesenchymal stromal cells (BMSCs) and to elucidate the underlying mechanisms. METHODS: Forty male Sprague-Dawley rats were allocated into four groups: control, peritoneal dialysis fluid (PDF), PDF + BMSCs, and PDF + APSBMSCs (APS-pre-treated BMSCs). A peritoneal fibrosis model was induced using PDF. Dil-labeled BMSCs were administered intravenously. Post-transplantation, BMSC homing to the peritoneum and pathological alterations were assessed. Stromal cell-derived factor-1 (SDF-1) levels were quantified via enzyme-linked immunosorbent assay (ELISA), while CXCR4 expression in BMSCs was determined using PCR and immunofluorescence. Additionally, a co-culture system involving BMSCs and peritoneal mesothelial cells (PMCs) was established using a Transwell setup to examine the in vitro effects of APS on BMSC migration and therapeutic efficacy, with the CXCR4 inhibitor AMD3100 deployed to dissect the role of the SDF-1/CXCR4 axis and its downstream impacts. RESULTS: In vivo and in vitro experiments confirmed that APS pre-treatment notably facilitated the targeted homing of BMSCs to the peritoneal tissue of PDF-treated rats, thereby amplifying their therapeutic impact. PDF exposure markedly increased SDF-1 levels in peritoneal and serum samples, which encouraged the migration of CXCR4-positive BMSCs. Inhibition of the SDF-1/CXCR4 axis through AMD3100 application diminished BMSC migration, consequently attenuating their therapeutic response to peritoneal mesenchyme-to-mesothelial transition (MMT). Furthermore, APS upregulated CXCR4 expression in BMSCs, intensified the activation of the SDF-1/CXCR4 axis's downstream pathways, and partially reversed the AMD3100-induced effects. CONCLUSION: APS augments the SDF-1/CXCR4 axis's downstream pathway activation by increasing CXCR4 expression in BMSCs. This action bolsters the targeted homing of BMSCs to the peritoneal tissue and amplifies their suppressive influence on MMT, thereby improving peritoneal fibrosis.


Assuntos
Astrágalo , Quimiocina CXCL12 , Células-Tronco Mesenquimais , Fibrose Peritoneal , Polissacarídeos , Ratos Sprague-Dawley , Receptores CXCR4 , Animais , Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Ratos , Masculino , Fibrose Peritoneal/tratamento farmacológico , Fibrose Peritoneal/metabolismo , Polissacarídeos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Modelos Animais de Doenças , Ciclamos/farmacologia
2.
Phytomedicine ; 129: 155683, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38701543

RESUMO

BACKGROUND: Peritoneal dialysis (PD) is a successful renal replacement therapy for end-stage renal disease. Long-term PD causes mesothelial-mesenchymal transition (MMT) of peritoneal mesothelial cells (PMCs), leading to peritoneal fibrosis (PF), which reduces the efficiency of PD. Macrophages are thought to play a role in the onset and perpetuation of peritoneal injury. However, the mechanisms by which macrophages-PMCs communication regulates peritoneal fibrosis are not fully understood resulting in a lack of disease-modifying drugs. Astragaloside IV (AS-IV) possessed anti-fibrotic effect towards PF in PD whereas the mechanistic effect of AS-IV in PD is unknown. METHODS: The primary macrophages were extracted and treated with LPS or AS-IV, then co-cultured with primary PMCs in transwell plates. The macrophage-derived exosomes were extracted and purified by differential centrifugation, then co-cultured with primary PMCs. Small RNA-seq was used to detect differential miRNAs in exosomes, and then KEGG analysis and q-PCR were performed for validation. In vivo PD rat models were established by inducing with high-glucose peritoneal dialysis fluid and different concentrations of AS-IV and exosomes were intraperitoneal injection. Through qRT-PCR, western blotting, and luciferase reporting, candidate proteins and pathways were validated in vivo and in vitro. The functions of the validated pathways were further investigated using the mimic or inhibition strategy. PF and inflammatory situations were assessed. RESULTS: We found AS-IV reversed the MMT of PMCs caused by LPS-stimulated macrophages and the improving effect was mediated by macrophage-derived exosomes in vitro. We also demonstrated that AS-IV significantly reduced the MMT of PMCs in vitro or PF in a rat PD model via regulating exosome-contained miR-204-5p which targets Foxc1/ß-catenin signaling pathway. CONCLUSION: AS-IV attenuates macrophage-derived exosomes induced fibrosis in PD through the miR-204-5p/Foxc1 pathway.


Assuntos
Exossomos , Macrófagos , MicroRNAs , Fibrose Peritoneal , Ratos Sprague-Dawley , Saponinas , Triterpenos , Fibrose Peritoneal/tratamento farmacológico , Animais , Exossomos/metabolismo , Exossomos/efeitos dos fármacos , Saponinas/farmacologia , Triterpenos/farmacologia , Ratos , MicroRNAs/metabolismo , Masculino , Macrófagos/efeitos dos fármacos , Diálise Peritoneal/efeitos adversos , Modelos Animais de Doenças , Células Cultivadas , Técnicas de Cocultura
3.
Front Physiol ; 15: 1331976, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390449

RESUMO

Long-term peritoneal dialysis (PD) causes structural and functional alterations of the peritoneal membrane. Peritoneal deterioration and fibrosis are multicellular and multimolecular processes. Under stimulation by deleterious factors such as non-biocompatibility of PD solution, various cells in the abdominal cavity show differing characteristics, such as the secretion of different cytokines, varying protein expression levels, and transdifferentiation into other cells. In this review, we discuss the role of various cells in the abdominal cavity and their interactions in the pathogenesis of PD. An in-depth understanding of intercellular communication and inter-organ communication in PD will lead to a better understanding of the pathogenesis of this disease, enabling the development of novel therapeutic targets.

4.
J Ethnopharmacol ; 309: 116343, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36906159

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine, Centella asiatica (L.) Urb., has been extensively utilized in clinics to treat a variety of fibrotic disorders. Asiaticoside (ASI), as an important active ingredient, has attracted much attention in this field. However, the effect of ASI on peritoneal fibrosis (PF) is still unclear. Therefore, we evaluated the benefits of ASI for PF and mesothelial-mesenchymal transition (MMT) and revealed the underlying mechanisms. AIM OF STUDY: The objective of this investigation was to anticipate the potential molecular mechanism of ASI against peritoneal mesothelial cells (PMCs) MMT employing proteomics and network pharmacology, and to confirm it using in vivo and in vitro studies. MATERIALS AND METHODS: The mesentery of peritoneal fibrosis mice and normal mice were analyzed quantitatively for proteins that were differentially expressed using a technique tandem mass tag (TMT). Next, the core target genes of ASI against PF were screened through network pharmacology analysis, and PPI and C-P‒T networks were constructed by Cytoscape Version 3.7.2. According to the findings of a GO and KEGG enrichment analysis of differential proteins and core target genes, the signaling pathway with a high correlation degree was selected as the key signaling pathway of ASI inhibiting the PMCs MMT for further molecular docking analysis and experimental verification. RESULTS: TMT-based quantitative proteome analysis revealed the identification of 5727 proteins, of which 70 were downregulated and 178 were upregulated. Among them, the levels of STAT1, STAT2, and STAT3 in the mesentery of mice with peritoneal fibrosis were considerably lower than in the control group, indicating a role for the STAT family in the pathogenesis of peritoneal fibrosis. Then, a total of 98 ASI-PF-related targets were identified by network pharmacology analysis. JAK2 is one of the top 10 core target genes representing a potential therapeutic target. JAK/STAT signaling may represent a core pathway mediating PF effects by ASI. Molecular docking studies showed that ASI had the potential to interact favorably with target genes involved in the JAK/STAT signaling pathway, such as JAK2 and STAT3. The experimental results showed that ASI could significantly alleviate Chlorhexidine Gluconate (CG)-induced peritoneal histopathological changes and increase JAK2 and STAT3 phosphorylation levels. In TGF-ß1-stimulated HMrSV5 cells, E-cadherin expression levels were dramatically reduced whereas Vimentin, p-JAK2, α-SMA, and p-STAT3 expression levels were considerably increased. ASI inhibited the TGF-ß1-induced HMrSV5 cell MMT, decreased the activation of JAK2/STAT3 signaling, and increased the nuclear translocation of p-STAT3, which was consistent with the effect of the JAK2/STAT3 pathway inhibitor AG490. CONCLUSION: ASI can inhibit PMCs MMT and alleviate PF by regulating the JAK2/STAT3 signaling pathway.


Assuntos
Fibrose Peritoneal , Camundongos , Animais , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/tratamento farmacológico , Fibrose Peritoneal/genética , Fator de Crescimento Transformador beta1/metabolismo , Simulação de Acoplamento Molecular , Farmacologia em Rede , Proteômica , Linhagem Celular , Transição Epitelial-Mesenquimal , Transdução de Sinais
5.
Phys Chem Chem Phys ; 20(31): 20571-20574, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30058658

RESUMO

The electron localization in Nb-doped CaMnO3 is analyzed in terms of the space and energy distribution of electronic states employing first-principles calculations. The energy difference of Mn 3d states and Nb 4d states makes NbO6 octahedra impede electrical conduction, so the random distribution of Nb in lattices leads to the localization of electrons near the bottom of the conduction bands. Therefore, although more carriers are introduced when Nb-doping content increases, both the electrical conductivity and absolute thermopower decrease in Nb heavy doped CaMnO3. The calculated transport properties agree well with the experimental data, supporting the analysis of localization.

6.
Sci Rep ; 7: 40436, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28091545

RESUMO

Sulphur doping effects on the crystal structures, thermoelectric properties, density-of-states, and effective mass in Cu1.98SxSe1-x were studied based on the electrical and thermal transport property measurements, and first-principles calculations. The X-ray diffraction patterns and Rietveld refinements indicate that room temperature Cu1.98SxSe1-x (x = 0, 0.02, 0.08, 0.16) and Cu1.98SxSe1-x (x = 0.8, 0.9, 1.0) have the same crystal structure as monoclinic-Cu2Se and orthorhombic-Cu2S, respectively. Sulphur doping can greatly enhance zT values when x is in the range of 0.8≤ × ≤1.0. Furthermore, all doped samples show stable thermoelectric compatibility factors over a broad temperature range from 700 to 1000 K, which could greatly benefit their practical applications. First-principles calculations indicate that both the electron density-of-sates and the effective mass for all the compounds exhibit non-monotonic sulphur doping dependence. It is concluded that the overall thermoelectric performance of the Cu1.98SxSe1-x system is mainly correlated with the electron effective mass and the density-of-states.

7.
Biometals ; 29(2): 265-74, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26857738

RESUMO

Three experiments were conducted to investigate the effects of inorganic and organic Mn sources on MnSOD mRNA, protein and enzymatic activity and the possible signal pathways. The primary broiler myocardial cells were treated with MnCl2 (I) or one of organic chelates of Mn and amino acids with weak, moderate (M) or strong (S) chelation strength for 12 and 48 h. Cells were preincubated with superoxide radical anions scavenger N-acetylcysteine (NAC) or specific inhibitors for MAPKs and protein tyrosine kinase (PTK) or protein kinase C (PKC) for 30 min before treatments of I and M. The MnSOD mRNA, protein and enzymatic activity, phosphorylated MAPKs or protein kinases activations were examined. The results showed that additions of Mn increased (P < 0.05) MnSOD mRNA levels and M was more effective than I. Additions of Mn elevated (P < 0.05) MnSOD protein levels and enzymatic activities, and no differences were found among I and M. Addition of NAC did not decrease (P > 0.05) Mn-induced MnSOD mRNA and protein levels. None of the three MAPKs was phosphorylated (P > 0.05) by Mn. Additions of Mn decreased (P < 0.05) the PTK activities and increased (P < 0.05) the membrane PKC contents. Inhibitors for PTK or PKC decreased (P < 0.05) Mn-induced MnSOD protein levels. The results suggested that Mn-induced MnSOD mRNA and protein expressions be not related with NAC, and MAPK pathways might not involve in Mn-induced MnSOD mRNA expression. PKC and PTK mediated the Mn-induced MnSOD protein expression.


Assuntos
Proteínas Aviárias/metabolismo , Manganês/farmacologia , Proteína Quinase C/metabolismo , Proteínas Tirosina Quinases/metabolismo , Superóxido Dismutase/metabolismo , Animais , Células Cultivadas , Galinhas , Ativação Enzimática , Masculino , Fosforilação , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional
8.
Biol Trace Elem Res ; 146(2): 181-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22081403

RESUMO

An experiment was conducted to investigate the bioavailability of organic manganese proteinate (Mn) relative to inorganic Mn sulfate for broilers fed a conventional corn-soybean meal basal diet. A total of 448-day-old Arbor Acres commercial male chicks were fed the Mn-unsupplemented basal diet (control) or basal diet supplemented with 60, 120, or 180 mg Mn/kg from each Mn source. At 21 days of age, heart tissue was excised for testing DM, Mn concentration, manganese superoxide dismutase (MnSOD) activity, and MnSOD mRNA level. The Mn concentration, MnSOD activity, and MnSOD mRNA level in heart tissue increased (P < 0.01) linearly as dietary manganese concentration increased. Based on slope ratios from multiple linear regressions of the above three indices on added Mn level, there was no significant difference (P > 0.21) in bioavailability between Mn proteinate and Mn sulfate for broilers in this experiment.


Assuntos
Dieta , Manganês/farmacocinética , Miocárdio/metabolismo , Compostos Organometálicos/farmacocinética , Ração Animal , Animais , Disponibilidade Biológica , Peso Corporal , Galinhas , Modelos Lineares , Masculino , Manganês/administração & dosagem , Compostos de Manganês/administração & dosagem , Compostos de Manganês/farmacocinética , Análise Multivariada , Miocárdio/enzimologia , Compostos Organometálicos/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Aleatória , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Glycine max , Sulfatos/administração & dosagem , Sulfatos/farmacocinética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fatores de Tempo , Zea mays
9.
Biol Trace Elem Res ; 144(1-3): 695-704, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21671088

RESUMO

Previous studies showed that dietary manganese can increase the MnSOD mRNA expression in a dose-dependent manner in the heart of broilers. In order to explore the specific mechanism of the MnSOD expression induced by manganese, a model of MnSOD expression was developed with primary cultured broiler myocardial cells. The objective of the present study was to investigate whether the model was working or not and to determine how manganese affects the expression of the enzyme in broiler myocardial cells in vitro. In experiment 1, various amount of manganese (0, 0.25, 0.5, 1, 2, and 4 mM) were added into the cultures for 24-h incubation to investigate MnSOD expression and for 0-, 6-, 12-, 24-, 36-, and 48-h incubation to measure the cell viability. In experiment 2, the most suitable Mn supplementation based on the results of experiment 1 was added into cultures for 6-, 12-, 24-, and 48-h incubation. The results showed that MnSOD mRNA, MnSOD protein, and MnSOD activity were induced by manganese in dose- and time-dependent manner. Manganese regulates MnSOD expression not only at transcriptional level but also at translational and/or posttranslational levels.


Assuntos
Galinhas/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Manganês/farmacologia , Miócitos Cardíacos/enzimologia , Superóxido Dismutase/biossíntese , Animais , Western Blotting , Contagem de Células , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...