Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros













Intervalo de ano de publicação
1.
Photoacoustics ; 38: 100613, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38764521

RESUMO

Traditional methods under sparse view for reconstruction of photoacoustic tomography (PAT) often result in significant artifacts. Here, a novel image to image transformation method based on unsupervised learning artifact disentanglement network (ADN), named PAT-ADN, was proposed to address the issue. This network is equipped with specialized encoders and decoders that are responsible for encoding and decoding the artifacts and content components of unpaired images, respectively. The performance of the proposed PAT-ADN was evaluated using circular phantom data and the animal in vivo experimental data. The results demonstrate that PAT-ADN exhibits excellent performance in effectively removing artifacts. In particular, under extremely sparse view (e.g., 16 projections), structural similarity index and peak signal-to-noise ratio are improved by ∼188 % and ∼85 % in in vivo experimental data using the proposed method compared to traditional reconstruction methods. PAT-ADN improves the imaging performance of PAT, opening up possibilities for its application in multiple domains.

2.
Vet Microbiol ; 292: 110071, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574695

RESUMO

Duck Tembusu virus (DTMUV) is a newly emerging pathogen that causes massive economic losses to the poultry industry in China and neighbouring countries. Vimentin, an intermediate filament protein, has been demonstrated to be involved in viral replication during infection. However, the specific role of vimentin in DTMUV replication has not been determined. In this study, we found that overexpression of vimentin in BHK-21 cells can inhibit DTMUV replication. Moreover, DTMUV replication was enhanced after vimentin expression was reduced in BHK-21 cells via small interfering RNA (siRNA). Further research indicated that DTMUV infection had no effect on the transcription or expression of vimentin. However, we found that DTMUV infection induced vimentin rearrangement, and the rearrangement of vimentin was subsequently confirmed to negatively modulate viral replication through the use of a vimentin network disrupting agent. Vimentin rearrangement is closely associated with its phosphorylation. Our experiments revealed that the phosphorylation of vimentin at Ser56 was promoted in the early stage of DTMUV infection. In addition, by inhibiting the phosphorylation of vimentin at Ser56 with a CDK5 inhibitor, vimentin rearrangement was suppressed, and DTMUV replication was significantly enhanced. These results indicated that DTMUV infection induced vimentin phosphorylation and rearrangement through CDK5, resulting in the inhibition of DTMUV replication. In summary, our study reveals a role for vimentin as a negative factor in the process of DTMUV replication, which helps to elucidate the function of cellular proteins in regulating DTMUV replication.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Animais , Patos , Vimentina/genética , Flavivirus/fisiologia , Infecções por Flavivirus/veterinária , Replicação Viral
3.
DNA Cell Biol ; 43(4): 185-196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38466945

RESUMO

Cisplatin (DDP) resistance frequently occurs in gastric cancer (GC) therapy. Tanshinone I is a liposoluble phenanthraquinone compound present in the roots of Salvia miltiorrhiza Bunge (Danshen). In this study, we aimed to explore the effects of tanshinone I on modulating DDP resistance of GC cells in vitro and in vivo. DDP-resistant GC cell models (BGC823/DDP and SGC7901/DDP) were established, and their viability, proliferation, migration, lactate dehydrogenase activity, reactive oxygen species (ROS) generation, and pyroptosis were assessed after DDP treatment with or without tanshinone I. In addition, a mouse model with subcutaneously transplanted GC tumors was established to confirm the effects of tanshinone I and DDP on tumor growth and cell pyroptosis. The results revealed that tanshinone I inhibited DDP-resistant GC cell proliferation and migration; increased intracellular ROS levels; and activated cell pyroptosis by enhancing the levels of cleaved caspase-8, cleaved caspase-3, GSDME-NT, phospho-IKK-α/ß, and nuclear factor kappa-B (NF-κB). GSDME knockdown weakened these effects of tanshinone I on DDP-resistant GC cells. Furthermore, DDP combined with tanshinone I inhibited the growth of subcutaneously transplanted GC tumors in mice by reducing cell proliferation and inducing pyroptosis. In conclusion, tanshinone I reversed DDP resistance of GC cells by stimulating pyroptosis, by activating NF-κB/caspase-3(8)/GSDME signaling pathway.


Assuntos
Abietanos , Cisplatino , Neoplasias Gástricas , Animais , Camundongos , Cisplatino/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Piroptose , NF-kappa B/metabolismo , Caspase 3/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Apoptose , Resistencia a Medicamentos Antineoplásicos , Transdução de Sinais , Linhagem Celular Tumoral
4.
Transl Oncol ; 42: 101900, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316094

RESUMO

Resistance to chimeric antigen receptor (CAR) T-cell therapy remains a significant challenge in the treatment of solid tumors. This resistance is attributed to various factors, including antigen loss, immunosuppressive tumor microenvironment, and upregulated checkpoint molecules. Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunosuppressive enzyme that promotes immune escape in tumors. In this study, we investigated the role of ARID5A (AT-rich interactive domain 5A) in resistance to CAR-T cell therapy. Our findings revealed that ARID5A upregulation in tumor cells induces T cell exhaustion and immune evasion. Mechanistically, ARID5A plays a crucial role in resistance to CAR-T cell therapy by stabilizing IDO1 mRNA, leading to upregulation of IDO1 expression. Elevated IDO1 expression facilitates the conversion of tryptophan to kynurenine, which contributes to CAR-T cell exhaustion. Moreover, kynurenine accumulation within CAR-T cells activates the aryl hydrocarbon receptor (AhR), further exacerbating the exhaustion phenotype. Importantly, we demonstrated that targeting the ARID5A-IDO1-AhR axis using AhR or IDO1 inhibitors effectively alleviated T cell exhaustion induced by ARID5A. These findings suggest that modulating the ARID5A-IDO1-AhR axis may represent a promising therapeutic strategy to overcome CAR T-cell therapy resistance in solid tumors and enhance treatment efficacy.

5.
Opt Express ; 32(3): 3138-3156, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297542

RESUMO

The trade-off between imaging efficiency and imaging quality has always been encountered by Fourier single-pixel imaging (FSPI). To achieve high-resolution imaging, the increase in the number of measurements is necessitated, resulting in a reduction of imaging efficiency. Here, a novel high-quality reconstruction method for FSPI imaging via diffusion model was proposed. A score-based diffusion model is designed to learn prior information of the data distribution. The real-sampled low-frequency Fourier spectrum of the target is employed as a consistency term to iteratively constrain the model in conjunction with the learned prior information, achieving high-resolution reconstruction at extremely low sampling rates. The performance of the proposed method is evaluated by simulations and experiments. The results show that the proposed method has achieved superior quality compared with the traditional FSPI method and the U-Net method. Especially at the extremely low sampling rate (e.g., 1%), an approximately 241% improvement in edge intensity-based score was achieved by the proposed method for the coin experiment, compared with the traditional FSPI method. The method has the potential to achieve high-resolution imaging without compromising imaging speed, which will further expanding the application scope of FSPI in practical scenarios.

6.
Cell Signal ; 117: 111122, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38417634

RESUMO

BACKGROUND: This study aimed to elucidate the mechanism by which wall shear stress (WSS) influences vascular walls, accounting for the susceptibility of intracranial aneurysms (IAs) to rupture. METHOD: We collected blood samples from the sacs of 24 ruptured and 28 unruptured IAs and analyzed the expression of chemokine CCL7 using enzyme-linked immunosorbent assay (ELISA). Univariate and multivariate logistic regression analyses were employed to assess clinical data, aneurysm morphology, and hemodynamics in both groups. Pearson correlation analysis investigated the relationship between CCL7 expression in aneurysm sac blood and WSS. Additionally, we established a bionic cell parallel plate co-culture shear stress model and a mouse low shear stress (LSS) model. The model was modulated using CCL7 recombinant protein, CCR1 inhibitor, and TAK1 inhibitor. We further evaluated CCL7 expression in endothelial cells and the levels of TAK1, NF-κB, IL-1ß, and TNF-α in macrophages. Subsequently, the intergroup differences in expression were calculated. RESULTS: CCL7 expression was significantly higher in the ruptured group compared to the unruptured group. Hemodynamic analysis indicated that WSS was an independent predictor of the risk of aneurysm rupture. A negative linear correlation was observed between CCL7 expression and WSS. Upon addition of CCL7 recombinant protein, upregulation of CCR1 expression and increased levels of p-TAK1 and p-p65 were observed. Treatment with CCR1 and TAK1 inhibitors reduced inflammatory cytokine expression in macrophages under LSS conditions. Overexpression of TAK1 significantly alleviated the inhibitory effects of CCR1 inhibitors on p-p65 and inflammatory cytokines. CONCLUSION: LSS prompts endothelial cells to secrete CCL7, which, upon binding to the macrophage surface receptor CCR1, stimulates the release of macrophage inflammatory factors via the TAK1/NF-κB signaling pathway. This process exacerbates aneurysm wall inflammation and increases the risk of aneurysm rupture.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Animais , Camundongos , NF-kappa B , Células Endoteliais , Hemodinâmica/fisiologia , Inflamação , Citocinas , Proteínas Recombinantes
7.
iScience ; 27(3): 109165, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38420589

RESUMO

Subarachnoid hemorrhage (SAH) is a stroke subtype with high mortality, and its severity is closely related to the short-term prognosis of SAH patients. S100 calcium-binding protein A9 (S100A9) has been shown to be associated with some neurological diseases. In this study, the concentration of S100A9 in clinical cerebrospinal fluid samples was detected by enzyme-linked immunosorbent assay (ELISA), and the relationship between S100A9 and the prognosis of patients was explored. In addition, WT mice and S100A9 knockout mice were used to establish an in vivo SAH model. Neurological scores, brain water content, and histopathological staining were performed after a specified time. A co-culture model of BV2 and HT22 cells was treated with heme chloride to establish an in vitro SAH model. Our study confirmed that the expression of S100A9 protein in the CSF of SAH patients is increased, and it is related to the short-term prognosis of SAH patients. S100A9 protein is highly expressed in microglia in the central nervous system. S100A9 gene knockout significantly improved neurological function scores and reduced neuronal apoptosis. S100A9 protein can activate TLR4 receptor, promote nuclear transcription of NF-κB, increase the activation of inflammatory body, and ultimately aggravate nerve injury.

8.
RSC Adv ; 14(1): 424-432, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173584

RESUMO

We investigate switching of photoluminescence (PL) from PbS quantum dots (QDs) crosslinked with two different types of photochromic diarylethene molecules, 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (1H) and 4,4'-(1-perfluorocyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (2F). Our results show that the QDs crosslinked with the hydrogenated molecule (1H) exhibit a greater amount of switching in photoluminescence intensity compared to QDs crosslinked with the fluorinated molecule (2F). With a combination of differential pulse voltammetry and density functional theory, we attribute the different amount of PL switching to the different energy levels between 1H and 2F molecules which result in different potential barrier heights across adjacent QDs. Our findings provide a deeper understanding of how the energy levels of bridge molecules influence charge tunneling and PL switching performance in QD systems and offer deeper insights for the future design and development of QD based photo-switches.

9.
Apoptosis ; 29(1-2): 121-141, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37848672

RESUMO

Bladder cancer (BLCA) is ranked among the top ten most prevalent cancers worldwide and is the second most common malignant tumor within the field of urology. The limited effectiveness of immune targeted therapy in treating BLCA, due to its high metastasis and recurrence rates, necessitates the identification of new therapeutic targets. Secretogranin II (SCG2), a member of the chromaffin granin/secreted granin family, plays a crucial role in the regulated release of peptides and hormones. The role of SCG2 in the tumor microenvironment (TME) of lung adenocarcinoma and colon cancer has been established, but its functional significance in BLCA remains uncertain. This study aimed to investigate SCG2 expression in 15 bladder cancer tissue samples and their corresponding adjacent control tissues. The potential involvement of SCG2 in BLCA progression was assessed using various techniques, including analysis of public databases, immunohistochemistry, Western Blotting, immunofluorescence, wound-healing assay, Transwell assay, and xenograft tumor formation experiments in nude mice. This study provided novel evidence indicating that SCG2 plays a pivotal role in facilitating the proliferation, migration, and invasion of BLCA by activating the MEK/Erk and MEK/IKK/NF-κB signaling pathways, as well as by promoting M2 macrophage polarization. These findings propose the potential of SCG2 as a molecular target for immunotherapy in human BLCA.


Assuntos
NF-kappa B , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Apoptose , Cromograninas/uso terapêutico , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno , NF-kappa B/genética , NF-kappa B/metabolismo , Secretogranina II/genética , Secretogranina II/metabolismo , Secretogranina II/uso terapêutico , Microambiente Tumoral , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo
10.
J Biophotonics ; 17(1): e202300281, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010827

RESUMO

Photoacoustic tomography (PAT) commonly works in sparse view due to data acquisition limitations. However, reconstruction suffers from serious deterioration (e.g., severe artifacts) using traditional algorithms under sparse view. Here, a novel accelerated model-based iterative reconstruction strategy for sparse-view PAT aided by multi-channel autoencoder priors was proposed. A multi-channel denoising autoencoder network was designed to learn prior information, which provides constraints for model-based iterative reconstruction. This integration accelerates the iteration process, leading to optimal reconstruction outcomes. The performance of the proposed method was evaluated using blood vessel simulation data and experimental data. The results show that the proposed method can achieve superior sparse-view reconstruction with a significant acceleration of iteration. Notably, the proposed method exhibits excellent performance under extremely sparse condition (e.g., 32 projections) compared with the U-Net method, with an improvement of 48% in PSNR and 12% in SSIM for in vivo experimental data.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Algoritmos
11.
Neural Regen Res ; 19(5): 988-997, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37862200

RESUMO

Ferroptosis is a form of regulated cell death characterized by massive iron accumulation and iron-dependent lipid peroxidation, differing from apoptosis, necroptosis, and autophagy in several aspects. Ferroptosis is regarded as a critical mechanism of a series of pathophysiological reactions after stroke because of iron overload caused by hemoglobin degradation and iron metabolism imbalance. In this review, we discuss ferroptosis-related metabolisms, important molecules directly or indirectly targeting iron metabolism and lipid peroxidation, and transcriptional regulation of ferroptosis, revealing the role of ferroptosis in the progression of stroke. We present updated progress in the intervention of ferroptosis as therapeutic strategies for stroke in vivo and in vitro and summarize the effects of ferroptosis inhibitors on stroke. Our review facilitates further understanding of ferroptosis pathogenesis in stroke, proposes new targets for the treatment of stroke, and suggests that more efforts should be made to investigate the mechanism of ferroptosis in stroke.

12.
Viruses ; 15(12)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38140690

RESUMO

Since 2010, the Tembusu virus (TMUV) has been highly prevalent in China, causing significant economic losses to the poultry industry. In 2022, a suspected outbreak of TMUV occurred at a goose farm located in Anhui Province. A strain of TMUV, TMUV HQ-22, was isolated from the infected geese. Phylogenetic analysis using the E gene of the HQ-22 strain demonstrated its affiliation with cluster 3, a less commonly reported cluster in comparison to the main circulating cluster, cluster 2. Through a comparison of the envelope (E) protein of HQ-22 with other typical TMUV strains, a mutation at the 157th amino acid position was identified, wherein valine (V) in cluster 3 changed to alanine (A), a characteristic that is unique to cluster 2. These findings highlight the diversity and complexity of the TMUV strains circulating in China. In our experimental analysis, an injection of TMUV HQ-22 into the muscles of 3-day-old goslings resulted in severe neurological symptoms and a mortality rate of 60%. Similarly, the intracranial or intranasal infection of 3-week-old ICR mice with TMUV HQ-22 led to severe neurological symptoms and respective mortality rates of 100% or 10%. In summary, our study isolated a TMUV strain, TMUV HQ-22, from geese that belongs to cluster 3 and exhibits significant pathogenicity in both goslings and ICR mice. These results emphasize the genetic diversity of the TMUV circulating in China and expand the host range beyond mosquitoes to include ducks, chickens, geese, and even mice. It is crucial to not underestimate the risk of TMUV infection in mammals, warranting our utmost attention.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Animais , Camundongos , Gansos , Filogenia , Virulência , Camundongos Endogâmicos ICR , Galinhas , Flavivirus/fisiologia , Patos , Mamíferos
13.
Photoacoustics ; 33: 100558, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021282

RESUMO

As a non-invasive hybrid biomedical imaging technology, photoacoustic tomography combines high contrast of optical imaging and high penetration of acoustic imaging. However, the conventional standard reconstruction under sparse view could result in low-quality image in photoacoustic tomography. Here, a novel model-based sparse reconstruction method for photoacoustic tomography via diffusion model was proposed. A score-based diffusion model is designed for learning the prior information of the data distribution. The learned prior information is utilized as a constraint for the data consistency term of an optimization problem based on the least-square method in the model-based iterative reconstruction, aiming to achieve the optimal solution. Blood vessels simulation data and the animal in vivo experimental data were used to evaluate the performance of the proposed method. The results demonstrate that the proposed method achieves higher-quality sparse reconstruction compared with conventional reconstruction methods and U-Net. In particular, under the extreme sparse projection (e.g., 32 projections), the proposed method achieves an improvement of ∼ 260 % in structural similarity and ∼ 30 % in peak signal-to-noise ratio for in vivo data, compared with the conventional delay-and-sum method. This method has the potential to reduce the acquisition time and cost of photoacoustic tomography, which will further expand the application range.

14.
Biochem Pharmacol ; 218: 115905, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37949322

RESUMO

BACKGROUND AND PURPOSE: Neurogenic pulmonary edema (NPE) frequently arises as a complication subsequent to subarachnoid hemorrhage (SAH). Heterodimers of S100A8 and S100A9 are commonly formed, thereby initiating an inflammatory reaction through receptor binding on the cell surface. Paquinimod serves as a specific inhibitor of S100A9. The objective of this investigation is to assess the impact of Paquinimod administration and S100A9 knockout on NPE following SAH. METHODS: In this study, SAH models of C57BL/6J wild-type (WT) and S100A9 knockout mice were established through intravascular perforation. These models were then divided into several groups, including the WT-sham group, S100A9-KO-sham group, WT-SAH group, WT-SAH + Paquinimod group, and S100A9-KO-SAH group. After 24 h of SAH induction, pulmonary edema was assessed using the lung wet-dry weight method and Hematoxylin and eosin (HE) staining. Additionally, the expression levels of various proteins, such as interleukin-1ß (IL-1ß), tumor necrosis factor α (TNF-α), occludin, claudin-3, Bax, Bcl-2, TLR4, MYD88, and pNF-κB, in lung tissue were analyzed using western blot and immunofluorescence staining. Lung tissue apoptosis was detected by TUNEL staining. RESULTS: Firstly, our findings indicate that the knockout of S100A9 has a protective effect on early brain injury following subarachnoid hemorrhage (SAH). Additionally, the reduction of brain injury after SAH can also alleviate neurogenic pulmonary edema (NPE). Immunofluorescence staining and western blot analysis revealed that compared to SAH mice with wild-type S100A9 expression (WT-SAH), the lungs of S100A9 knockout SAH mice (S100A9-KO-SAH) and mice treated with Paquinimod exhibited decreased levels of inflammatory molecules (IL-1ß and TNF-α) and increased levels of tight junction proteins. Furthermore, the knockout of S100A9 resulted in upregulated expression of the apoptotic-associated protein Bax and down-regulated expression of Bcl-2. Furthermore, a decrease in TLR4, MYD88, and phosphorylated pNF-κB was noted in S100A9-KO-SAH and Paquinimod treated mice, indicating the potential involvement of the TLR4/MYD88/NF-κB signaling pathway in the inhibition of the protective effect of S100A9 on NPE following SAH. CONCLUSION: The knockout of S100A9 not only ameliorated initial cerebral injury following subarachnoid hemorrhage (SAH), but also mitigated SAH-associated neurogenic pulmonary edema (NPE). Additionally, Paquinimod was found to diminish NPE. These findings imply a correlation between the central nervous system and peripheral organs, highlighting the potential of safeguarding the brain to mitigate harm to peripheral organs.


Assuntos
Lesões Encefálicas , Edema Pulmonar , Hemorragia Subaracnóidea , Animais , Camundongos , Proteína X Associada a bcl-2/metabolismo , Lesões Encefálicas/patologia , Calgranulina B , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Edema Pulmonar/tratamento farmacológico , Edema Pulmonar/etiologia , Edema Pulmonar/prevenção & controle , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Redox Biol ; 68: 102960, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979447

RESUMO

C-X-C chemokine receptor type 4 (CXCR4) is critical for homeostasis of the adaptive and innate immune system in some CNS diseases. Bruton's tyrosine kinase (BTK) is an essential kinase that regulates inflammation in immune cells through multiple signaling pathways. This study aims to explore the effect of CXCR4 and BTK on neuroinflammation in the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Our results showed that the expression of CXCR4 and p-BTK increased significantly at 24 h after SAH in vivo and in vitro. Ibrutinib improved neurological impairment, BBB disruption, cerebral edema, lipid peroxidation, neuroinflammation and neuronal death at 24 h after SAH. Inhibition of BTK phosphorylation promoted the in vitro transition of hemin-treated proinflammatory microglia to the anti-inflammatory state, inhibited the p-P65 expression and microglial pyroptosis. NLRP3 deficiency can significantly reduce pyroptosis in SAH mice. Moreover, CXCR4 inhibition can suppress NLRP3-mediated pyroptosis, NF-κB activation and NOX2 expression in vitro, and ibrutinib can abolish CXCR4-aggravated BBB damage and pyroptosis in EBI after SAH. The levels of CXCR4 in CSF of SAH patients is significantly increased, and it is positively correlated with GSDMD and IL-1ß levels, and have a moderate diagnostic value for outcome at 6-month follow-up. Our findings revealed the effect of CXCR4 and P-BTK on NLRP3-mediated pyroptosis and lipid peroxidation after SAH in vivo and in vitro, and the potential diagnostic role of CXCR4 in CSF of SAH patients. Inhibition of CXCR4-BTK axis can significantly attenuate NLRP3-mediated pyroptosis and lipid peroxidation by regulating NF-κB activation in EBI after SAH.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Ratos , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Tirosina Quinase da Agamaglobulinemia/metabolismo , Peroxidação de Lipídeos , Hemorragia Subaracnóidea/metabolismo , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , Lesões Encefálicas/etiologia , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
16.
Vet Res ; 54(1): 103, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936178

RESUMO

Duck Tembusu virus (DTMUV) is a neurotropic virus in the genus Flavivirus that causes massive economic losses to the poultry industry in China and neighbouring countries. Autophagy is pivotal in cellular responses to pathogens and in viral pathogenesis. However, little is known about the roles of autophagy in DTMUV replication and viral pathogenesis, especially in neuropathogenesis. In this study, mouse neuroblastoma cells (Neuro-2a) were used to establish a cell model of DTMUV infection. Our experiments indicated that DTMUV infection induced incomplete autophagy in Neuro-2a cells. Then, we used different autophagy regulators to alter the autophagy induced by DTMUV and found that incomplete autophagy promoted DTMUV replication. Furthermore, we showed that DTMUV infection activated the ERK and AMPK pathways, resulting in decreased phosphorylation of the autophagy repressor mTOR, subsequently leading to autophagic induction. In addition, we utilized ICR mice in an animal model of DTMUV infection to evaluate the autophagic responses in brain tissues and investigate the effects of autophagy on viral replication and tissue lesions. Our results confirmed that DTMUV induced incomplete autophagy in mouse brain tissues and that autophagy inducer treatment promoted DTMUV replication and aggravated DTMUV-induced lesions, whereas autophagy inhibitor treatment had the opposite effects. In summary, DTMUV infection induced incomplete autophagy through the ERK/mTOR and AMPK/mTOR signalling pathways to promote viral replication in mouse neuronal cells, and DTMUV-induced incomplete autophagy contributed to the neuropathogenesis of DTMUV.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Animais , Camundongos , Infecções por Flavivirus/veterinária , Proteínas Quinases Ativadas por AMP , Camundongos Endogâmicos ICR , Flavivirus/fisiologia , Replicação Viral , Patos , Serina-Treonina Quinases TOR , Autofagia
17.
Int Immunopharmacol ; 125(Pt A): 111106, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925951

RESUMO

BACKGROUND AND PURPOSE: Neuroinflammation is an important mechanism underlying brain injury caused by subarachnoid hemorrhage (SAH). C-C chemokine receptor type 1 (CCR1)-mediated inflammation is involved in the pathology of many central nervous system diseases. Herein, we investigated whether inhibition of CCR1 alleviated neuroinflammation after experimental SAH and aimed to elucidate the mechanisms of its potential protective effects. METHODS: To analyze SAH transcriptome data R studio was used, and a mouse model of SAH was established using endovascular perforations. In this model, the selective CCR1 antagonist Met-RANTES (Met-R) and the CCR1 agonist recombinant CCL5 (rCCL5) were administered 1 h after SAH induction. To investigate the possible downstream mechanisms of CCR1, the JAK2 inhibitor AG490 and the JAK2 activator coumermycin A1 (C-A1) were administered 1 h after SAH induction. Furthermore, post-SAH evaluation, including SAH grading, neurological function tests, Western blot, the terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and Fluoro-Jade B and fluorescent immunohistochemical staining were performed. Cerebrospinal fluid (CSF) samples were detected by ELISA. RESULTS: CCL5 and CCR1 expression levels increased significantly following SAH. Met-R significantly improved neurological deficits in mice, decreased apoptosis and degeneration of ipsilateral cerebral cortex neurons, reduced infiltrating neutrophils, and promoted microglial activation after SAH induction. Furthermore, Met-R inhibited the expression of p-JAK2, p-STAT3, interleukin-1ß, and tumor necrosis factor-α. However, the protective effects of Met-R were abolished by C-A1 treatment. Furthermore, rCCL5 injection aggravated neurological dysfunction and increased the expression of p-JAK2, p-STAT3, interleukin-1ß, and tumor necrosis factor-α in SAH mice, all of which were reversed by the administration of AG490. Finally, the levels of CCL5 and CCR1 were elevate in the CSF of SAH patient and high level of CCL5 and CCR1 levels were associated with poor outcome. CONCLUSION: The present results suggested that inhibition of CCR1 attenuates neuroinflammation after SAH via the JAK2/STAT3 signaling pathway, which may provide a new target for the treatment of SAH.


Assuntos
Receptores de Quimiocinas , Hemorragia Subaracnóidea , Animais , Camundongos , Apoptose , Interleucina-1beta/metabolismo , Janus Quinase 2/metabolismo , Doenças Neuroinflamatórias , Receptores CCR1/metabolismo , Receptores de Quimiocinas/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Molecules ; 28(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687056

RESUMO

Carbohydrate-based low-molecular-weight gelators are interesting new materials with many potential applications. These compounds can be designed to include multiple stimuli-responsive functional groups. In this study, we designed and synthesized several chemically responsive bola-glycolipids and dimeric carbohydrate- and diarylethene-based photoswitchable derivatives. The dimeric glycolipids formed stable gels in a variety of solvent systems. The best performing gelators in this series contained decanedioic and dithienylethene (DTE) spacers, which formed gels in eight and nine of the tested solvents, respectively. The two new DTE-containing esters possessed interesting photoswitching properties and DTE derivative 7 was found to have versatile gelation properties in many solvents, including DMSO solutions at low concentrations. The gels formed by these compounds were stable under acidic conditions and tended to hydrolyze under basic conditions. Several gels were used to absorb rhodamine B and Toluidine blue from aqueous solutions. In this study, we demonstrated the rational design of molecular gelators which incorporated photoresponsive and pH responsive functions, leading to the discovery of multiple effective stimuli-responsive gelators.

19.
Molecules ; 28(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37630308

RESUMO

Carbohydrate-derived molecular gelators have found many practical applications as soft materials. To better understand the structure and molecular gelation relationship and further explore the applications of sugar-based gelators, we designed and synthesized eight trimeric branched sugar triazole derivatives and studied their self-assembling properties. These included glucose, glucosamine, galactose, and maltose derivatives. Interestingly, the gelation properties of these compounds exhibited correlations with the peripheral sugar structures. The maltose derivative did not form gels in the tested solvents, but all other compounds exhibited gelation properties in at least one of the solvents. Glucose derivatives showed superior performance, followed by glucosamine derivatives. They typically formed gels in toluene and alcohols; some formed gels in ethanol-water mixtures or DMSO water mixtures. The glycoclusters 9 and 10 demonstrated rate acceleration for the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions. These were further studied for their metallogels formation properties, and the copper metallogels from compound 9 were successfully utilized to catalyze click reactions. These metallogels were able to form a gel column, which was effective in converting the reactants into the triazole products in multiple cycles. Moreover, the same gel column was used to transform a second click reaction using different reactants. The synthesis and characterization of these compounds and their applications for catalytic reactions were discussed.

20.
Heliyon ; 9(8): e18032, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37534007

RESUMO

Purpose: To investigate whether the use of absorble AZ31B magnesium alloys over distraction gaps improves the quality and quantity of regenerated bone better than the use of Collagen membranes. Methods: Fifteen mixed-breed dogs were randomly divided into the experimental (n = 10) and control (n = 5) groups. In the experimental group, two devices were implanted along the mandible; one side with absorble AZ31B and the other side with Collagen. The control animals did not undergo osteotomy or distraction. After a consolidation time of two months, 30 specimens were harvested, and newly created bone was identified using CBCT and micro-CT. Results: The Collagen membranes were absorbed completely, and the AZ31B membranes became irregular and rough. Mandible length was successfully extended approximately 1 cm. More bone formation was found after using AZ31B than Collagen, and there was a significant difference in width reduction between experimental sites treated with AZ31B (0.11 ± 0.04 cm) and Collagen (0.42 ± 0.06 cm) (p < 0.05). Trabecular thickness was also significantly higher in AZ31B (0.338 ± 0.08 cm) and control (0.417 ± 0.05 cm) than Collagen (0.178 ± 0.04 cm) (p < 0.05). Conclusion: An AZ31B membrane barrier is biocompatible and absorbable which can maintain the distraction gap and provide support to the attached osteoprogenitors by providing space for them to proliferate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA