Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 847: 157518, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35878862

RESUMO

Conservation agriculture (CA) has been adopted worldwide on about 200 Mha to enhance soil organic carbon (SOC) for mitigating climate change. However, as a crucial mechanism to sequester SOC, how the protection of aggregates responds to the interaction between no-till and crop rotations (two principles of CA) remains unknown. Thus, a field experiment with six treatments [e.g., no-till or rotary tillage under the maize-wheat-soybean-wheat system (NT-MWSW, RT-MWSW), no-till or rotary tillage under the maize-wheat system (NT-MW, RT-MW), and no-till or rotary tillage under the soybean-wheat system (NT-SW, RT-SW)] was conducted from June 2018 to June 2021 in the North China Plain (NCP) to assess their effects on aggregation and SOC. Results indicated that macroaggregates (> 0.25 mm) were the main contributors to the soil carbon (C) pool, comprised 64.7-87.3 % of aggregates, and encompassed 64.9-73.1 % of the SOC stock. NT increased not only the proportion of macroaggregates but also aggregate stability (i.e., mean weight diameter and geometric mean diameter). Significant positive effects from legumes were observed under NT. SW increased by 13.6 % macroaggregate-associated SOC under NT in 0-20 cm compared to that under MW. Additionally, the conversion rate of straw C input under NT-SW was higher than that in other treatments, augmenting it by 9.4-21.9 %. This may be attributed to the higher macroaggregate total nitrogen (increased by 1.7-15.9 %) in 0-10 cm under legume-based crop rotations compared to that under MW, resulting in lower C: N ratios, which promoted the decomposition of straw. Furthermore, the total potential mineralization of macroaggregates under NT legume-based crop rotations was 3.0-16.0 % higher than that of MW. Thus, a legume-based NT system can significantly improve soil macro-aggregation, increase the conversion rate of straw C input, and reduce C loss, which can be a viable practice to enhance SOC sequestration capacity under CA in the NCP.


Assuntos
Fabaceae , Solo , Agricultura/métodos , Carbono/análise , Sequestro de Carbono , China , Produção Agrícola , Nitrogênio , Verduras
2.
Sci Total Environ ; 819: 153089, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35038532

RESUMO

With increasing attention being placed on mitigating global warming and achieving agricultural sustainable intensification, conservation agriculture practices have gradually been implemented in the North China Plain (NCP). However, there are still knowledge gaps on the effects of conservation practices on greenhouse gas (GHG) emissions in this area. In this study, a four-year field experiment was conducted from 2014 to 2018 to assess the effects of tillage and crop residue management practices on the emissions of nitrous oxide (N2O) and methane (CH4). Subsequently, crop yields, area-scaled and yield-scaled total non-carbon dioxide (CO2) GHG emissions were assessed. Our research found that no-till (NT) decreased N2O emissions by 22.6% compared with conventional tillage (CT) in winter wheat (Triticum aestivum L.) seasons, but there was no difference between tillage practices in summer maize (Zea mays L.) seasons. Crop residue retention practice (+R) increased N2O emissions by 28.1% and 26.7% compared with residue removal practice (-R) in winter wheat and summer maize seasons, respectively. The NT soils took up more CH4 compared with the CT soils in summer maize seasons. Area-scaled total non-CO2 GHG emissions showed trends similar to those of N2O emission. Since crop residue retention improved the maize yield compared with the residue removal treatments, yield-scaled total non-CO2 GHGs emission did not differ between residue management practices in summer maize seasons. Our four-year field measurements indicated that no-till practice could be more useful as an option to mitigate non-CO2 GHG emissions in the wheat - maize cropping system.


Assuntos
Gases de Efeito Estufa , Agricultura , China , Fertilizantes/análise , Óxido Nitroso/análise , Solo , Triticum , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...