Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Cell Commun Signal ; 22(1): 367, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030619

RESUMO

Colorectal cancer (CRC) is a common gastrointestinal malignancy with higher incidence and mortality rates in men compared to women, potentially due to the effects of estrogen signaling. There is substantial evidence supporting the significant role of 17ß-Estradiol (E2) in reducing CRC risk in females, although this perspective remains debated. E2 has been demonstrated to inhibit CRC cell proliferation and migration at the cellular level by enhancing DNA mismatch repair, modulating key gene expression, triggering cell cycle arrest, and reducing activity of migration factors. Furthermore, E2 contributes to promote a tumor microenvironment unfavorable for CRC growth by stimulating ERß expression, reducing inflammatory responses, reversing immunosuppression, and altering the gut microbiome composition. Conversely, under conditions of high oxidative stress, hypoxia, and nutritional deficiencies, E2 may facilitate CRC development through GPER-mediated non-genomic signaling. E2's influence on CRC involves the genomic and non-genomic signals mediated by ERß and GPER, respectively, leading to its dual roles in anticancer activity and carcinogenesis. This review aims to summarize the potential mechanisms by which E2 directly or indirectly impacts CRC development, providing insights into the phenomenon of sexual dimorphism in CRC and suggesting potential strategies for prevention and treatment.


Assuntos
Neoplasias Colorretais , Estradiol , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Estradiol/metabolismo , Animais , Receptor beta de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Microambiente Tumoral , Transdução de Sinais
2.
Adv Mater ; : e2406143, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39072892

RESUMO

Tuberculosis, a fatal infectious disease caused by Mycobacterium tuberculosis (M.tb), is difficult to treat with antibiotics due to drug resistance and short drug half-life. Phototherapy represents a promising alternative to antibiotics in combating M.tb. Exploring an intelligent material allowing effective tuberculosis treatment is definitely appealing, yet a significantly challenging task. Herein, an all-in-one biomimetic therapeutic nanoparticle featured by aggregation-induced second near-infrared emission, granuloma-targeting, and self-oxygenation is constructed, which can serve for prominent fluorescence imaging-navigated combined phototherapy toward tuberculosis. After camouflaging the biomimetic erythrocyte membrane, the nanoparticles show significantly prolonged blood circulation and increased selective accumulation in tuberculosis granuloma. Upon laser irradiation, the loading photosensitizer of aggregation-induced emission photosensitizer elevates the production of reactive oxygen species (ROS), causing M.tb damage and death. The delivery of oxygen to relieve the hypoxic granuloma microenvironment supports ROS generation during photodynamic therapy. Meanwhile, the photothermal agent, Prussian blue nanoparticles, plays the role of good photothermal killing effect on M.tb. Moreover, the growth and proliferation of granuloma and M.tb colonies are effectively inhibited in the nanoparticle-treated tuberculous granuloma model mice, suggesting the combined therapeutic effects of enhancing photodynamic therapy and photothermal therapy.

3.
Virology ; 597: 110149, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38917689

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant socioeconomic burden, and combating COVID-19 is imperative. Blocking the SARS-CoV-2 RBD-ACE2 interaction is a promising therapeutic approach for viral infections, as SARS-CoV-2 binds to the ACE2 receptors of host cells via the RBD of spike proteins to infiltrate these cells. We used computer-aided drug design technology and cellular experiments to screen for peptide S4 with high affinity and specificity for the human ACE2 receptor through structural analysis of SARS-CoV-2 and ACE2 interactions. Cellular experiments revealed that peptide S4 effectively inhibited SARS-CoV-2 and HCoV-NL63 viruses from infecting host cells and was safe for cells at effective concentrations. Based on these findings, peptide S4 may be a potential pharmaceutical agent for clinical application in the treatment of the ongoing SARS-CoV-2 pandemic.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , Peptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Internalização do Vírus/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Peptídeos/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Ligação Proteica , COVID-19/virologia , Coronavirus Humano NL63/efeitos dos fármacos , Coronavirus Humano NL63/fisiologia , Chlorocebus aethiops , Animais
4.
Cell Death Dis ; 15(6): 460, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942760

RESUMO

Lung cancer stands as the leading cause of mortality among all types of tumors, with over 40% of cases being lung adenocarcinoma (LUAD). Family with sequence similarity 83 member A (FAM83A) emerges as a notable focus due to its frequent overexpression in LUAD. Despite this, the precise role of FAM83A remains elusive. This study addresses this gap by unveiling the crucial involvement of FAM83A in maintaining the cancer stem cell-like (CSC-like) phenotype of LUAD. Through a global proteomics analysis, the study identifies human epidermal growth factor receptor 2 (HER2 or ErbB2) as a crucial target of FAM83A. Mechanistically, FAM83A facilitated ErbB2 expression at the posttranslational modification level via the E3 ubiquitin ligase STUB1 (STIP1-homologous U-Box containing protein 1). More importantly, the interaction between FAM83A and ErbB2 at Arg241 promotes calcineurin (CALN)-mediated dephosphorylation of ErbB2, followed by inhibition of STUB1-mediated ubiquitin-proteasomal ErbB2 degradation. The maintenance of the CSC-like phenotype by FAM83A, achieved through the posttranslational regulation of ErbB2, offers valuable insights for identifying potential therapeutic targets for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Proteínas de Neoplasias , Células-Tronco Neoplásicas , Fenótipo , Receptor ErbB-2 , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Feminino
5.
Mol Biol Rep ; 51(1): 618, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705956

RESUMO

BACKGROUND: Astragalus membranaceus is a plant of the Astragalus genus, which is used as a traditional Chinese herbal medicine with extremely high medicinal and edible value. Astragalus mongholicus, as one of the representative medicinal materials with the same origin of medicine and food, has a rising market demand for its raw materials, but the quality is different in different production areas. Growth-regulating factors (GRF) are transcription factors unique to plants that play important roles in plant growth and development. Up to now, there is no report about GRF in A. mongholicus. METHODS AND RESULTS: This study conducted a genome-wide analysis of the AmGRF gene family, identifying a total of nine AmGRF genes that were classified into subfamily V based on phylogenetic relationships. In the promoter region of the AmGRF gene, we successfully predicted cis-elements that respond to abiotic stress, growth, development, and hormone production in plants. Based on transcriptomic data and real-time quantitative polymerase chain reaction (qPCR) validation, the results showed that AmGRFs were expressed in the roots, stems, and leaves, with overall higher expression in leaves, higher expression of AmGRF1 and AmGRF8 in roots, and high expression levels of AmGRF1 and AmGRF9 in stems. CONCLUSIONS: The results of this study provide a theoretical basis for the further exploration of the functions of AmGRFs in plant growth and development.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Fatores de Transcrição , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Astragalus propinquus/genética , Astragalus propinquus/metabolismo , Família Multigênica , Genoma de Planta , Perfilação da Expressão Gênica/métodos , Regiões Promotoras Genéticas/genética , Astrágalo/genética , Astrágalo/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico/genética , Transcriptoma/genética , Reguladores de Crescimento de Plantas/metabolismo
6.
Plant Signal Behav ; 19(1): 2355740, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38776425

RESUMO

During plant growth and development, the YABBY gene plays a crucial role in the morphological structure, hormone signaling, stress resistance, crop breeding, and agricultural production of plant lateral organs, leaves, flowers, and fruits. Astragalus mongholicus is a perennial herbaceous plant in the legume family, widely used worldwide due to its high medicinal and edible value. However, there have been no reports of the YABBY gene family in A. mongholicus. This study used bioinformatics methods, combined with databases and analysis websites, to systematically analyze the AmYABBY gene family in the entire genome of A. mongholicus and verified its expression patterns in different tissues of A. mongholicus through transcriptome data and qRT-PCR experiments. A total of seven AmYABBY genes were identified, which can be divided into five subfamilies and distributed on three chromosomes. Two pairs of AmYABBY genes may be involved in fragment duplication on three chromosomes. All AmYABBY proteins have a zinc finger YABBY domain, and members of the same group have similar motif composition and intron - exon structure. In the promoter region of the genes, light-responsive and MeJa-response cis-elements are dominant. AmYABBY is highly expressed in stems and leaves, especially AmYABBY1, AmYABBY2, and AmYABBY3, which play important roles in the growth and development of stems and leaves. The AmYABBY gene family regulates the growth and development of A. mongholicus. In summary, this study provides a theoretical basis for in-depth research on the function of the AmYABBY gene and new insights into the molecular response mechanism of the growth and development of the traditional Chinese medicine A. mongholicus.


Assuntos
Astrágalo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Astrágalo/genética , Astrágalo/metabolismo , Genoma de Planta/genética , Família Multigênica , Filogenia , Genes de Plantas , Regiões Promotoras Genéticas/genética
7.
Animals (Basel) ; 14(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731327

RESUMO

DNA polymerase ß (DNA polymerase beta (POLB)) belongs to a member of the DNA polymerase X family, mainly involved in various biological metabolic processes, such as eukaryotic DNA replication, DNA damage repair, gene recombination, and cell cycle regulation. In this study, the muscle development-related gene POLB was screened by selection signature and RNA-seq analysis and then validated for the proliferation and apoptosis of bovine primary myocytes. It was also found that overexpression of the POLB gene had a pro-apoptosis effect, but interfering with the expression of the gene had no significant effect on cells. Then, the analysis of related apoptotic genes revealed that POLB overexpression affected CASP9 gene expression.

9.
Micromachines (Basel) ; 15(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542627

RESUMO

The global demand for radio frequency (RF) modules and components has grown exponentially in recent decades. RF switches are the essential unit in RF front-end and reconfigurable systems leading to the rapid development of novel and advanced switch technology. Germanium telluride (GeTe), as one of the Chalcogenide phase-change materials, has been applied as an RF switch due to its low insertion loss, high isolation, fast switching speed, and low power consumption in recent years. In this review, an in-depth exploration of GeTe film characterization is presented, followed by a comparison of the device structure of directly heated and indirectly heated RF phase-change switches (RFPCSs). Focusing on the prototypical structure of indirectly heated RFPCSs as the reference, the intrinsic properties of each material layer and the rationale behind the material selection is analyzed. Furthermore, the design size of each material layer of the device and its subsequent RF performance are summarized. Finally, we cast our gaze toward the promising future prospects of RFPCS technology.

10.
Food Chem ; 447: 138981, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38518613

RESUMO

In the current study, the preservation effect of plasma-activated water (PAW), coconut exocarp flavonoids (CF) and their combination on golden pompano fillets during refrigerated storage was investigated with emphasize on the treating sequence. PAW effectively inactivated spoilage bacteria and inhibited total volatile basic nitrogen (TVB-N) increase, while boosted the TBARS and carbonyl values. PAW+CF exerted synergistic effect on extending the period before total bacterial count and TVB-N content reaching acceptance limit than PAW or CF alone (P < 0.05). In addition, their combined treatment effectively reduced fillets discoloration and texture deterioration. Simultaneously, lipid and protein oxidation were significantly inhibited, which was comparable to CF. It was indicated that the treatment sequence of PAW and CF profoundly impact the preservation effect. Specifically, prior CF marinating followed by PAW was more effective than the opposite sequence. Thus, combination of CF followed by PAW served as promising technique for fish fillets preservation.


Assuntos
Cocos , Conservação de Alimentos , Animais , Conservação de Alimentos/métodos , Água , Peixes
11.
Front Chem ; 12: 1359946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449477

RESUMO

Background: Sepsis is a life-threatening disease characterized by multiple organ failure due to excessive activation of the inflammatory response and cytokine storm. Despite recent advances in the clinical use of anti-cytokine biologics, sepsis treatment efficacy and improvements in mortality remain unsatisfactory, largely due to the mechanistic complexity of immune regulation and cytokine interactions. Methods: In this study, a broad-spectrum anti-inflammatory and endotoxin neutralization strategy was developed based on autologous "cryo-shocked" neutrophils (CS-Neus) for the management of sepsis. Neutrophils were frozen to death using a novel liquid nitrogen "cryo-shock" strategy. The CS-Neus retained the source cell membrane structure and functions related to inflammatory site targeting, broad-spectrum inflammatory cytokines, and endotoxin (LPS) neutralizing properties. This strategy aimed to disable harmful pro-inflammatory functions of neutrophils, such as cytokine secretion. Autologous cell-based therapy strategies were employed to avoid immune rejection and enhance treatment safety. Results: In both LPS-induced sepsis mouse models and clinical patient-derived blood samples, CS-Neus treatment significantly ameliorated cytokine storms by removing inflammatory cytokines and endotoxin. The therapy showed notable anti-inflammatory therapeutic effects and improved the survival rate of mice. Discussion: The results of this study demonstrate the potential of autologous "cryo-shocked" neutrophils as a promising therapeutic approach for managing sepsis. By targeting inflammatory organs and exhibiting anti-inflammatory activity, CS-Neus offer a novel strategy to combat the complexities of sepsis treatment. Further research and clinical trials are needed to validate the efficacy and safety of this approach in broader populations and settings.

12.
Environ Res ; 248: 118321, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307186

RESUMO

BACKGROUND: Metalloestrogens are metals and metalloid elements with estrogenic activity found everywhere. Their impact on human health is becoming more apparent as human activities increase. OBJECTIVE: Our aim is to conduct a comprehensive systematic review and meta-analysis of observational studies exploring the correlation between metalloestrogens (specifically As, Sb, Cr, Cd, Cu, Se, Hg) and Gestational Diabetes Mellitus (GDM). METHODS: PubMed, Web of Science, and Embase were searched to examine the link between metalloestrogens (As, Sb, Cr, Cd, Cu, Se, and Hg) and GDM until December 2023. Risk estimates were derived using random effects models. Subgroup analyses were conducted based on study countries, exposure sample, exposure assessment method, and detection methods. Sensitivity analyses and adjustments for publication bias were carried out to assess the strength of the findings. RESULTS: Out of the 389 articles identified initially, 350 met our criteria and 33 were included in the meta-analysis, involving 141,175 subjects (9450 cases, 131,725 controls). Arsenic, antimony, and copper exposure exhibited a potential increase in GDM risk to some extent (As: OR = 1.28, 95 % CI [1.08, 1.52]; Sb: OR = 1.73, 95 % CI [1.13, 2.65]; Cu: OR = 1.29, 95 % CI [1.02, 1.63]), although there is a high degree of heterogeneity (As: Q = 52.93, p < 0.05, I2 = 64.1 %; Sb: Q = 31.40, p < 0.05, I2 = 80.9 %; Cu: Q = 21.14, p < 0.05, I2 = 71.6 %). Conversely, selenium, cadmium, chromium, and mercury exposure did not exhibit any association with the risk of GDM in our study. DISCUSSION: Our research indicates that the existence of harmful metalloestrogens in the surroundings has a notable effect on the likelihood of GDM. Hence, we stress the significance of environmental elements in the development of GDM and the pressing need for relevant policies and measures.

13.
Cell Oncol (Dordr) ; 47(3): 1025-1041, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38345749

RESUMO

PURPOSE: Glucose not only provides energy for tumor cells, but also provides various biomolecules that are essential for their survival, proliferation and invasion. Therefore, it is of great clinical significance to understand the mechanism of how tumor cells adapt to metabolic stress and maintain their survival. The aim of this research was to study the critical role of OGT and TRIM29 O-GlcNAc modification driven adaptability of PDAC cells to low glucose stress, which might have important medical implications for PDAC therapy. METHODS: Western blotting, mass spectrometry and WGA-immunoprecipitation were used to examined the levels of OGT and O-GlcNAc glycosylated proteins in BxPC3 and SW1990 cells in normal culture and under glucose deprivation conditions. Crystal violet assay, flow cytometry, RIP, RT-qPCR, protein stability assay, biotin pull down were used to investigate the mechanism of OGT and TRIM29-mediated adaptive response to glucose deficiency in PDAC cells. RESULTS: The current study found that under the condition of low glucose culture, the levels of OGT and O-GlcNAc glycosylation in PDAC cells were significantly higher than those in normal culture. Moreover, the high expression of OGT has a protective effect on PDAC cells under low glucose stress. This study confirmed that there was no significant change in mRNA level and protein degradation of OGT under low glucose stress, which was mainly reflected in the increase of protein synthesis. In addition, O-GlcNAc modification at T120 site plays a critical role in the metabolic adaptive responses mediated by TRIM29. CONCLUSIONS: Taken together, our study indicated that O-GlcNAcylation of TRIM29 at T120 site and OGT translation forms a loop feedback to facilitate survival of PDAC under glucose deficiency.


Assuntos
Glucose , N-Acetilglucosaminiltransferases , Neoplasias Pancreáticas , Fatores de Transcrição , Humanos , Acetilglucosamina/metabolismo , Acilação , Adaptação Fisiológica/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Retroalimentação Fisiológica , Glucose/metabolismo , Glicosilação , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Biossíntese de Proteínas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
14.
Nat Nanotechnol ; 19(6): 834-845, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38383890

RESUMO

Conventional antibiotics used for treating tuberculosis (TB) suffer from drug resistance and multiple complications. Here we propose a lesion-pathogen dual-targeting strategy for the management of TB by coating Mycobacterium-stimulated macrophage membranes onto polymeric cores encapsulated with an aggregation-induced emission photothermal agent that is excitable with a 1,064 nm laser. The coated nanoparticles carry specific receptors for Mycobacterium tuberculosis, which enables them to target tuberculous granulomas and internal M. tuberculosis simultaneously. In a mouse model of TB, intravenously injected nanoparticles image individual granulomas in situ in the lungs via signal emission in the near-infrared region IIb, with an imaging resolution much higher than that of clinical computed tomography. With 1,064 nm laser irradiation from outside the thoracic cavity, the photothermal effect generated by these nanoparticles eradicates the targeted M. tuberculosis and alleviates pathological damage and excessive inflammation in the lungs, resulting in a better therapeutic efficacy compared with a combination of first-line antibiotics. This precise photothermal modality that uses dual-targeted imaging in the near-infrared region IIb demonstrates a theranostic strategy for TB management.


Assuntos
Macrófagos , Mycobacterium tuberculosis , Nanopartículas , Terapia Fototérmica , Tuberculose , Animais , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Terapia Fototérmica/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/terapia , Tuberculose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Membrana Celular/metabolismo , Pulmão/patologia , Pulmão/diagnóstico por imagem , Pulmão/microbiologia , Modelos Animais de Doenças , Humanos , Feminino
15.
Food Chem ; 443: 138584, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306903

RESUMO

To explore the combination effects of plasma-activated water and dielectric barrier discharge (PAW-DBD) cold plasma treatment on the formation of volatile flavor and lipid oxidation in Asian sea bass (ASB), the volatile flavor compounds and lipid profiles were characterized by gas chromatography-ion mobility spectrometry and LC-MS-based lipidomics analyses. In total, 38 volatile flavor compound types were identified, and the PAW-DBD group showed the most kinds of volatile components with a significant (p < 0.05) higher content in aldehydes, ketones, and alcohols. A total of 1500 lipids was detected in lipidomics analysis, phosphatidylcholine was the most followed by triglyceride. The total saturated fatty acids content in PAW-DBD group increased by 105.02 µg/g, while the total content of unsaturated fatty acids decreased by 275.36 µg/g. It can be concluded that the PAW-DBD processing increased both the types and amounts of the volatile flavor in ASB and promoted lipid oxidation by altering lipid profiles.


Assuntos
Bass , Gases em Plasma , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Água , Ácidos Graxos
16.
Front Pharmacol ; 15: 1264418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375035

RESUMO

The prevalence of colorectal cancer is increasing worldwide, and despite advances in treatment, colorectal cancer (CRC) remains in the top three for mortality due to several issues, including drug resistance and low efficiency. There is increasing evidence that baicalin and baicalein, novel small molecule inhibitor extracts of the Chinese herb Scutellaria baicalensis, have better anti-colorectal cancer effects and are less likely to induce drug resistance in cancer cells. The present review article explains the anti-proliferative properties of baicalin and baicalein in the context of against CRC. Additionally, it explores the underlying mechanisms by which these compounds modulate diverse signaling pathways associated with apoptosis, cell proliferation, tumor angiogenesis, invasion, metastasis, and tumor microenvironment. Moreover, this review article highlights the inhibitory effect of colorectal inflammatory-cancer transformation and the near-term therapeutic strategy of using them as adjuvant agents in chemotherapy.

17.
Food Res Int ; 177: 113866, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225136

RESUMO

A lipidomics approach based on liquid chromatography-mass spectrometry was employed to investigate alterations in lipid profiles within the muscles of Asian sea bass (ASB) (Lates calcarifer) post-treatment with plasms-activated water (PAW). Lipidomics studies detected 1500 diverse lipid types in ASB muscles; the phosphatidylcholine (PC) lipid subclass constituted the highest number of lipids (21.07 %), followed by triglycerides (TGs, 20.53 %) and phosphatidylethanolamine (PE, 12.73 %). Comparative analysis between PAW-treated ASB and raw ASB revealed the presence of differentially abundant lipids, with 48 lipids accumulating at high levels and 92 at low levels. Pathway enrichment analysis identified a total of seven lipid-related metabolic pathways; glycerophospholipid metabolism emerged as the predominant pathway. Furthermore, the content of saturated fatty acids in PAW-treated ASB increased from 1059.81 µg/g (raw ASB) to 1099.77 µg/g. Conversely, the content of monounsaturated and polyunsaturated fatty acids decreased from 645.81 µg/g and 875.02 µg/g to 640.80 µg/g and 825.25 µg/g, respectively. Collectively, these results indicate significant alterations in ASB lipid profiles following PAW treatment, establishing a theoretical foundation for understanding the mechanism involved in promoting lipid oxidation.


Assuntos
Bass , Perciformes , Animais , Bass/metabolismo , Lipidômica , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ácidos Graxos/metabolismo
18.
Foods ; 13(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38201193

RESUMO

Cold plasma (CP) is a non-thermal preservation technology that has been successfully used to decontaminate and extend the shelf life of aquatic products. However, the preservation effect of CP treatment is determined by several factors, including voltage, time, and gas compositions. Therefore, this study aimed to investigate the effects of gas composition (GasA: 10% O2, 50% N2, 40% CO2; GasB: air; GasC: 30% O2, 30% N2, 40% CO2) on the lipid oxidation of tilapia fillets treated after CP treatment. Changes in the lipid oxidation values, the percentages of fatty acids, and sensory scores were studied during 8 d of refrigerator storage. The results showed that the CP treatment significantly increased all the primary and secondary lipid oxidation values measured in this study, as well as the percentages of saturated fatty acids, but decreased the percentages of unsaturated fatty acids, especially polyunsaturated fatty acids. The lipid oxidation values were significantly increased in the GasC-CP group. After 8 d, clearly increased percentages of saturated fatty acids, a low level of major polyunsaturated fatty acids (especially linoleic (C18:2n-6)), and a decrease in the percentages of eicosapentaenoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-3) were found in GasC-CP; that is, the serious oxidation of lipids was found in the high O2 concentration group. In addition, the sensory score was also lower than that of the hypoxia CP group. Therefore, high O2 concentrations can enhance lipid oxidation and the changes in the fatty acid concentration. Controlling the O2 concentration is reasonable to limit the degree to which lipids are oxidized in tilapia after the in-package CP treatment.

19.
Adv Mater ; 36(9): e2305378, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37931029

RESUMO

The recent prevalence of monkeypox has led to the declaration of a Public Health Emergency of International Concern. Monkeypox lesions are typically ulcers or pustules (containing high titers of replication-competent virus) in the skin and mucous membranes, which allow monkeypox virus to transmit predominantly through intimate contact. Currently, effective clinical treatments for monkeypox are lacking, and strategies for blocking virus transmission are fraught with drawbacks. Herein, this work constructs a biomimetic nanotemplate (termed TBD@M NPs) with macrophage membranes as the coat and polymeric nanoparticles loading a versatile aggregation-induced emission featured photothermal molecule TPE-BT-DPTQ as the core. In a surrogate mouse model of monkeypox (vaccinia-virus-infected tail scarification model), intravenously injected TBD@M NPs show precise tracking and near-infrared region II fluorescence imaging of the lesions. Upon 808 nm laser irradiation, the virus is eliminated by the photothermal effect and the infected wound heals rapidly. More importantly, the inoculation of treated lesion tissue suspensions does not trigger tail infection or inflammatory activation in healthy mice, indicating successful blockage of virus transmission. This study demonstrates for the first time monkeypox theranostics using nanomedicine, and may bring a new insight into the development of a viable strategy for monkeypox management in clinical trials.


Assuntos
Mpox , Nanopartículas , Animais , Camundongos , Terapia Fototérmica , Biomimética , Macrófagos , Nanopartículas/uso terapêutico
20.
J Sci Food Agric ; 104(5): 2750-2760, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37994167

RESUMO

BACKGROUND: Cold plasma exhibits broad applicability in the realm of fish sterilization and preservation. The combination process of plasma-activated water and dielectric barrier discharge (PAW-DBD) was optimized, and its disinfection effects on bass fillets were studied. RESULTS: The best conditions for disinfection of PAW-DBD were as follows. Bass fillets were soaked in PAW for 150 s, and then treated by DBD system at 160 kV for 180 s. The total viable count (TVC) reduced by 1.68 log CFU g-1 . On the 15th day of refrigerated storage, TVC of PAW-DBD group was 7.01 log CFU g-1 , while the PAW and DBD group exhibited a TVC of 7.02 and 7.01 log CFU g-1 on day 12; the TVC of the control group was 7.13 log CFU g-1 on day 6. The sensory score, water-holding capacity, and 2-thiobarbituric acid reactive substance values of the PAW-DBD group were significantly higher than those of PAW and DBD group (P < 0.05), whereas the TVC, Pseudomonas spp. count, and pH of the group were significantly lower (P < 0.05) during refrigerated storage. CONCLUSION: PAW-DBD treatment can enhance the disinfection effect, maintain good quality, and extend the storage period of bass fillets. © 2023 Society of Chemical Industry.


Assuntos
Bass , Perciformes , Gases em Plasma , Animais , Conservação de Alimentos , Gases em Plasma/farmacologia , Gases em Plasma/química , Alimentos Marinhos/análise , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...