Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 925: 171732, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492596

RESUMO

The present study utilized rice husk biomass as a carrier to synthesize rice husk biochar loaded with iron and nickel. Mono-metallic and bimetallic catalysts were prepared for the removal of toluene as the tar model. The efficiency of the catalysts for the removal of toluene was investigated, and finally, the removal mechanisms of mono-metallic and bimetallic catalysts for toluene were revealed. The experimental results showed that the bimetallic-loaded biochar catalysts had excellent toluene removal performance, which was closely related to the ratio of loaded Fe and Ni. Among them, the catalyst DBC-Fe2.5 %-Ni2.5 % (2.5 wt% iron loading and 2.5 wt% nickel loading) obtained through secondary calcination at 700 °C achieved the highest toluene removal efficiency of 92.76 %. The elements of Fe and Ni in the catalyst were uniformly dispersed on the surface and in the pores of the biochar, and the catalyst had a layered structure with good adsorption. Under the interaction of Fe and Ni, the agglomeration and sintering of Ni were reduced, and the surface acidity of the catalyst was increased, the surface acidity was favorable for toluene removal. The iron­nickel catalyst did not form significant alloys when calcined at 400 °C, whereas strong metal interactions occurred at 700 °C, resulting in the formation of Fe0.64Ni0.36 alloy and NiFe2O4 alloy. This NiFe alloy had abundant active sites to enhance the catalytic cracking of toluene and provide lattice oxygen for the reaction. Furthermore, the functional groups on the catalyst surface also had an impact on toluene removal. The catalyst prepared in this paper reduces the cost of tar removal, can be applied to the removal of industrial pollutant tars, reduces the pollution of the environment, and provides theoretical guidance and technical reference for the efficient removal of tar.

2.
Nat Plants ; 9(11): 1890-1901, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37884654

RESUMO

Plant survival depends on dynamic stress-response pathways in changing environments. To uncover pathway components, we screened an ethyl methanesulfonate-mutagenized transgenic line containing a stress-inducible luciferase construct and isolated a constitutive expression mutant. The mutant is the result of an amino acid substitution in the seventh subunit of the hetero-octameric conserved oligomeric Golgi (COG) complex of Arabidopsis thaliana. Complementation studies verified the Golgi localization of cog7, and stress tests established accelerated dark-induced carbon deprivation/senescence of the mutant compared with wild-type plants. Multiomics and biochemical analyses revealed accelerated induction of protein ubiquitination and autophagy, and a counterintuitive increased protein N-glycosylation in senescencing cog7 relative to wild-type. A revertant screen using the overexpressor (FOX)-hunting system established partial, but notable rescue of cog7 phenotypes by COG5 overexpression, and conversely premature senescence in reduced COG5 expressing lines. These findings identify COG-imposed Golgi functional integrity as a main player in ensuring cellular survival under energy-limiting conditions.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Glicosilação
3.
Chem Sci ; 14(37): 10297-10307, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37772093

RESUMO

HMGB1 (high-mobility group box 1) is a non-histone chromatin-associated protein that has been widely reported as a representative damage-associated molecular pattern (DAMP) and to play a pivotal role in the proinflammatory process once it is in an extracellular location. Accumulating evidence has shown that HMGB1 undergoes extensive post-translational modifications (PTMs) that actively regulate its conformation, localization, and intermolecular interactions. However, fully characterizing the functional implications of these PTMs has been challenging due to the difficulty in accessing homogeneous HMGB1 with site-specific PTMs of interest. In this study, we developed a streamlined protein semi-synthesis strategy via salicylaldehyde ester-mediated chemical ligations (Ser/Thr ligation and Cys/Pen ligation, STL/CPL). This methodology enabled us to generate a series of N-terminal region acetylated HMGB1 proteins. Further studies revealed that acetylation regulates HMGB1-heparin interaction and modulates HMGB1's stability against thrombin, representing a regulatory switch to control HMGB1's extracellular activity.

4.
Front Plant Sci ; 14: 1187551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389287

RESUMO

Introduction: Apricot fruits are edible and serve as a source of medicinal compounds. Flavonols are important plant secondary metabolites that have antioxidant and antitumor effects and may promote cardiovascular health. Methods: The flavonoid content in three stages of the 'Kuijin' and the 'Katy' was observed, followed by the combination of metabolome and transcriptome analysis to explore the metabolic basis of flavonol synthesis. Results: The differences in the metabolite contents between stages (of the same cultivar) and between cultivars (at the same stage) revealed decreases in the flavonoid content as fruits developed (i.e., from 0.28 mg/g to 0.12 mg/g in 'Kuijin' and from 0.23 mg/g to 0.05 mg/g in 'Katy'). To decipher the regulation of flavonol synthesis in apricot (Prunus armeniaca L.), the metabolomes and transcriptomes of fruit pulp at three developmental stages of 'Kuijin' and the 'Katy' were analyzed. A total of 572 metabolites were detected in 'Kuijin' and the 'Katy' pulp, including 111 flavonoids. The higher flavonol content young 'Kuijin' fruits at 42 days after full bloom is mainly due to 10 types of flavonols. Three pairs of significant differences in flavonol content were identified. From these three comparison groups, three structural genes were strongly correlated with the levels of 10 types of flavonols (Pearson correlation coefficients > 0.8, p value < 0.05), including PARG09190, PARG15135, and PARG17939. The weighted gene co-expression network analysis showed that the turquoise module genes were highly correlated with flavonol contents (P < 0.01). There were 4897 genes in this module. Out of 4897 genes, 28 transcription factors are associated with 3 structural genes based on weight value. Two of the transcription factors are not only associated with PARG09190 but also with PARG15135, indicating their critical importance in the flavonols biosynthesis. The two TFs are PARG27864 and PARG10875. Discussion: These findings provide new insights into the biosynthesis of flavonols and may explain the significant differences in flavonoid content between the 'Kuijin' and the 'Katy' cultivars. Moreover, it will aid in genetic improvement to enhance the nutritional and health value of apricots.

5.
Front Microbiol ; 14: 1109028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36922972

RESUMO

Bagging-free apple is more vulnerable to postharvest disease, which severely limits the cultivation pattern transformation of the apple industry in China. This study aimed to ascertain the dominant pathogens in postharvest bagging-free apples, to evaluate the efficacy of essential oil (EO) on inhibition of fungal growth, and to further clarify the molecular mechanism of this action. By morphological characteristics and rDNA sequence analyses, Botryosphaeria dothidea (B. dothidea) and Colletotrichum gloeosporioides (C. gloeosporioides) were identified as the main pathogens isolated from decayed bagging-free apples. Cinnamon and clove EO exhibited high inhibitory activities against mycelial growth both in vapor and contact phases under in vitro conditions. EO vapor at a concentration of 60 µL L-1 significantly reduced the incidence and lesion diameter of inoculated decay in vivo. Observations using a scanning electron microscope (SEM) and transmission electron microscope (TEM) revealed that EO changed the mycelial morphology and cellular ultrastructure and destroyed the integrity and structure of cell membranes and major organelles. Using RNA sequencing and bioinformatics, it was demonstrated that clove EO treatment impaired the cell membrane integrity and biological function via downregulating the genes involved in the membrane component and transmembrane transport. Simultaneously, a stronger binding affinity of trans-cinnamaldehyde and eugenol with CYP51 was assessed by in silico analysis, attenuating the activity of this ergosterol synthesis enzyme. Moreover, pronounced alternations in the oxidation/reduction reaction and critical materials metabolism of clove EO-treated C. gloeosporioides were also observed from transcriptomic data. Altogether, these findings contributed novel antimicrobial cellular and molecular mechanisms of EO, suggesting its potential use as a natural and useful preservative for controlling postharvest spoilage in bagging-free apples.

6.
J Ovarian Res ; 16(1): 46, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829196

RESUMO

Epithelial ovarian cancer (EOC) is a gynecological disease with the highest mortality. With the lack of understanding of its pathogenesis, no accurate early diagnosis and screening method has been established for EOC. Studies revealed the multi-faceted function of Wilms' tumor (Wt1) genes in cancer, which may be related to the existence of multiple alternative splices. Our results show that Wt1 (+KTS) or Wt1 (-KTS) overexpression can significantly promote the proliferation and migration of human ovarian epithelial cells HOSEpiC, and Wt1 (+KTS) effects were more evident. To explore the Wt1 (+/-KTS) variant mechanism in HOSEpiC proliferation and migration and ovarian cancer (OC) occurrence and development, this study explored the differential regulation of Wt1 (+/-KTS) in HOSEpiC proliferation and migration by transcriptome sequencing. OC-related hub genes were screened by bioinformatics analysis to further explore the differential molecular mechanism of Wt1 (+/-KTS) in the occurrence of OC. Finally, we found that the regulation of Wt1 (+/-KTS) variants on the proliferation and migration of HOSEpiC may act through different genes and signaling pathways and screened out key genes and differentially regulated genes that regulate the malignant transformation of ovarian epithelial cells. The implementation of this study will provide new clues for the early diagnosis and precise treatment of OC.


Assuntos
Neoplasias Renais , Tumor de Wilms , Humanos , Proteínas WT1/genética , Proteínas WT1/metabolismo , Tumor de Wilms/genética , Células Epiteliais/metabolismo , Neoplasias Renais/genética , Biologia Computacional , Proliferação de Células
7.
Food Chem ; 404(Pt B): 134651, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36444093

RESUMO

As a nutritious fruit, mulberry is an ideal source of high-quality cyanidin-3-O-glucoside (C3G) with various biological activities. However, the difficult separation process of high-purity C3G leads to its high price. To rapidly prepare high-purity C3G, cyanidin-3-O-rutinoside is converted to C3G by direct hydrolysis of rhamnose bond using a whole-cell catalyst containing α-rhamnosidase. Combined with an aqueous two-phase system, a coupling reaction separation system was established. Two monomers were successfully separated by semi-preparative high performance liquid chromatography (semi-preparative HPLC). The conversion of C3G catalyzed by whole-cells in the PEG/Na2SO4 system increased from 47.11 % to 66.56 %, compared with the EtOH/(NH4)2SO4 system, and the whole-cell activity remained above 50 % after five rounds of reuse. Meanwhile, the purity of C3G was increased to 99 % via the semi-preparative HPLC purification and identified by MS. Thus, an integrated process of whole-cell-catalyzed conversion and product peak cutting partition collection provides a novel strategy for efficient biomanufacturing of high-purity C3G.


Assuntos
Morus , Frutas , Cromatografia Líquida de Alta Pressão , Glucosídeos
8.
Sci Rep ; 12(1): 18818, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335168

RESUMO

The frequent and massive use of pesticides has led to pesticide residues in apricot, threatening food safety and human health. A reliable and simple modified QuEChERS method with ultra-performance liquid chromatography-tandem mass spectrometry was developed for the simultaneous determination of 11 pesticides in apricot. Method validation indicated that satisfied linearity (R2 ≥ 0.9959), accuracy (recoveries of 72-119%), sensitivity (limits of detection, 0.03-0.30 µg/kg; limits of quantification, 0.13-1.00 µg/kg), and precision (relative standard deviations ≤ 11.9%), and matrix effects were 0.89-1.13. Apricot samples from different ecological regions in China were collected and tested using the proposed methods. Monitoring results were used to assess the dietary intake risk of Chinese populations of different ages and genders. Dietary risk assessment revealed that the risk quotients were 0.003-1.184% for different gender and age groups in China, indicating none unacceptable public health risk for general population. This work was thus significant in developing a simpler, more efficient and economical analysis method and food safety risks of the 11 pesticides on apricot and facilitated the establishment of maximum residue limits.


Assuntos
Resíduos de Praguicidas , Praguicidas , Prunus armeniaca , Masculino , Humanos , Feminino , Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Resíduos de Praguicidas/análise , Plantas , China , Medição de Risco , Ingestão de Alimentos , Cromatografia Líquida de Alta Pressão/métodos
9.
Front Plant Sci ; 13: 946115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968118

RESUMO

Many studies have demonstrated that anthocyanin synthesis in apple peel is induced by light, but the color of bagged apple peel continues to change under dark conditions after light induction has not been characterized. Here, transcriptional and metabolic changes associated with changes in apple peel coloration in the dark after different light induction treatments were studied. Apple pericarp can achieve a normal color under complete darkness followed by light induction. Metabolomics analysis indicated that the expression levels of cyanidin-3-O-galactoside and cyanidin-3-O-glucoside were high, which might be associated with the red color development of apple peel. Transcriptome analysis revealed high expression levels of MdUFGTs, MdMYBs, and MdNACs, which might play a key role in light-induced anthocyanin accumulation under dark conditions. 13 key genes related to dark coloring after light induction was screened. The results of this study provide new insights into the mechanism of anthocyanin synthesis under dark conditions.

10.
Sci Adv ; 8(22): eabo0724, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35658042

RESUMO

Reconfiguration of the plastidial proteome in response to environmental cues is central to tailoring adaptive responses. To define the underlying mechanisms and consequences of these reconfigurations, we performed a suppressor screen, using a mutant (ceh1) accumulating high levels of a plastidial retrograde signaling metabolite, MEcPP. We isolated a revertant partially suppressing the dwarf stature and high salicylic acid of ceh1 and identified the mutation in a putative plastidial metalloprotease (VIR3). Biochemical analyses showed increased VIR3 levels in ceh1, accompanied by reduced abundance of VIR3-target enzymes, ascorbate peroxidase, and glyceraldehyde 3-phophate dehydrogenase B. These proteomic shifts elicited increased H2O2, salicylic acid, and MEcPP levels, as well as stromule formation. High light recapitulated VIR3-associated reconfiguration of plastidial metabolic and structural states. These results establish a link between a plastidial stress-inducible retrograde signaling metabolite and a putative metalloprotease and reveal how the reciprocity between the two components modulates plastidial metabolic and structural states, shaping adaptive responses.

11.
Nucleic Acids Res ; 50(12): 6820-6836, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35736216

RESUMO

Nitric oxide (NO) is a key player in numerous physiological processes. Excessive NO induces DNA damage, but how plants respond to this damage remains unclear. We screened and identified an Arabidopsis NO hypersensitive mutant and found it to be allelic to TEBICHI/POLQ, encoding DNA polymerase θ. The teb mutant plants were preferentially sensitive to NO- and its derivative peroxynitrite-induced DNA damage and subsequent double-strand breaks (DSBs). Inactivation of TEB caused the accumulation of spontaneous DSBs largely attributed to endogenous NO and was synergistic to DSB repair pathway mutations with respect to growth. These effects were manifested in the presence of NO-inducing agents and relieved by NO scavengers. NO induced G2/M cell cycle arrest in the teb mutant, indicative of stalled replication forks. Genetic analyses indicate that Polθ is required for translesion DNA synthesis across NO-induced lesions, but not oxidation-induced lesions. Whole-genome sequencing revealed that Polθ bypasses NO-induced base adducts in an error-free manner and generates mutations characteristic of Polθ-mediated end joining. Our experimental data collectively suggests that Polθ plays dual roles in protecting plants from NO-induced DNA damage. Since Polθ is conserved in higher eukaryotes, mammalian Polθ may also be required for balancing NO physiological signaling and genotoxicity.


Assuntos
Arabidopsis , Óxido Nítrico , Arabidopsis/genética , Dano ao DNA , DNA Polimerase teta
12.
New Phytol ; 233(4): 1732-1749, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34859454

RESUMO

Plants employ an array of intricate and hierarchical signaling cascades to perceive and transduce informational cues to synchronize and tailor adaptive responses. Systemic stress response (SSR) is a recognized complex signaling and response network quintessential to plant's local and distal responses to environmental triggers; however, the identity of the initiating signals has remained fragmented. Here, we show that both biotic (aphids and viral pathogens) and abiotic (high light and wounding) stresses induce accumulation of the plastidial-retrograde-signaling metabolite methylerythritol cyclodiphosphate (MEcPP), leading to reduction of the phytohormone auxin and the subsequent decreased expression of the phosphatase PP2C.D1. This enables phosphorylation of mitogen-activated protein kinases 3/6 and the consequential induction of the downstream events ultimately, resulting in biosynthesis of the two SSR priming metabolites pipecolic acid and N-hydroxy-pipecolic acid. This work identifies plastids as a major initiation site, and the plastidial retrograde signal MEcPP as an initiator of a multicomponent signaling cascade potentiating the biosynthesis of SSR activators, in response to biotic and abiotic triggers.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Plastídeos/metabolismo
13.
Plant Cell Environ ; 45(2): 378-391, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34919280

RESUMO

Maintenance of genome stability is an essential requirement for all living organisms. Formaldehyde and UV-B irradiation cause DNA damage and affect genome stability, growth and development, but the interplay between these two genotoxic factors is poorly understood in plants. We show that Arabidopsis adh2/gsnor1 mutant, which lacks alcohol dehydrogenase 2/S-nitrosoglutathione reductase 1 (ADH2/GSNOR1), are hypersensitive to low fluence UV-B irradiation or UV-B irradiation-mimetic chemicals. Although the ADH2/GSNOR1 enzyme can act on different substrates, notably on S-hydroxymethylglutathione (HMG) and S-nitrosoglutathione (GSNO), our study provides several lines of evidence that the sensitivity of gsnor1 to UV-B is caused mainly by UV-B-induced formaldehyde accumulation rather than other factors such as alteration of the GSNO concentration. Our results demonstrate an interplay between formaldehyde and UV-B that exacerbates genome instability, leading to severe DNA damage and impaired growth and development in Arabidopsis, and show that ADH2/GSNOR1 is a key player in combating these effects.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Formaldeído/efeitos adversos , Glutationa Redutase/genética , Raios Ultravioleta/efeitos adversos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/farmacologia , Glutationa Redutase/farmacologia , Mutagênicos/farmacologia
14.
Food Funct ; 12(24): 12826-12827, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34860220

RESUMO

Correction for 'Nutritional targeting modification of silkworm pupae oil catalyzed by a smart hydrogel immobilized lipase' by Jin-Zheng Wang et al., Food Funct., 2021, 12, 6240-6253, DOI: 10.1039/D1FO00913C.

15.
Bioorg Med Chem Lett ; 54: 128430, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34757215

RESUMO

Non-ribosomal cyclic peptides are abundant in natural sources, exhibiting attractive bioactivities and favorable pharmacological properties. Furthermore, their structural complexity renders them as attractive synthetic targets. A general task for cyclic peptide synthesis is the peptide cyclization. Compared to the traditional dehydration-based peptide macrolactamization, chemoselective peptide ligation provides an alternative, sometimes advantageous, strategy to cyclize peptides. Herein, we provide a series of structurally complex cyclic peptide examples whose total syntheses were achieved via peptide ligation-mediated peptide cyclization. The special features of these strategies for achieving the total synthesis are highlighted.


Assuntos
Peptídeos Cíclicos/síntese química , Serina/química , Treonina/química , Técnicas de Química Sintética , Ciclização , Estrutura Molecular , Peptídeos Cíclicos/química
16.
J Chem Inf Model ; 61(10): 5269-5279, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34553597

RESUMO

Proprotein convertase subtilisin kexin 9 (PCSK9) has been identified as a reliable therapeutic target for hypercholesterolemia and coronary artery heart diseases since the monoclonal antibodies of PCSK9 have launched. Disrupting the protein-protein interaction (PPI) between PCSK9 and the low-density lipoprotein receptor (LDLR) has been considered as a promising approach for developing PCSK9 inhibitors. However, PPIs have been traditionally considered difficult to target by small molecules since the PPI surface is usually large, flat, featureless, and without a "pocket" or "groove" for ligand binding. The PCSK9-LDLR PPI interface is such a typical case. In this study, a potential binding pocket was generated on the PCSK9-LDLR PPI surface of PCSK9 through induced-fit docking. On the basis of this induced binding pocket, virtual screening, molecular dynamics (MD) simulation, and biological evaluations have been applied for the identification of novel small molecule inhibitors of PCSK9-LDLR PPI. Among the selected compounds, compound 13 exhibited certain PCSK9-LDLR PPI inhibitory activity (IC50: 7.57 ± 1.40 µM). The direct binding affinity between 13 and PCSK9 was determined with a KD value of 2.50 ± 0.73 µM. The LDLR uptake function could be also restored to a certain extent by 13 in HepG2 cells. This well-characterized hit compound will facilitate the further development of novel small molecule inhibitors of PCSK9-LDLR PPI.


Assuntos
Simulação de Dinâmica Molecular , Pró-Proteína Convertase 9 , Células Hep G2 , Humanos , Pró-Proteína Convertase 9/metabolismo
17.
Org Lett ; 23(20): 7873-7877, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34581589

RESUMO

The development of enantioselective desymmetrization of para-quinamines with isocyanates catalyzed by chiral phosphoric acid is reported. The strategy provides concise access to functionalized imidazolidin-2-one derivatives in high yields and enantioselectivities under mild reaction conditions. Remarkably, this reaction could be performed on a gram scale using 5 mol % catalyst loading and the chiral imidazolidin-2-one derivatives could be easily transformed into valuable scaffolds without disturbing the enantiopurity, demonstrating the synthetic utility of this protocol.

18.
Front Plant Sci ; 12: 694954, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367217

RESUMO

Light and low temperatures induce anthocyanin accumulation, but intense sunlight causes photooxidative sunburn. Nonetheless, there have been few studies of anthocyanin synthesis under different sunlight intensities and low nighttime temperatures. Here, low nighttime temperatures followed by low light intensity were associated with greater anthocyanin accumulation and the expression of anthocyanin biosynthesis genes in "Fuji" apple peel. UDP-glucose flavonoid-3-O-glucosyltransferase (UFGT) activity was positively associated with anthocyanin enrichment. Ascorbic acid can be used as an electron donor of APX to scavenge H2O2 in plants, which makes it play an important role in oxidative defense. Exogenous ascorbate altered the anthocyanin accumulation and reduced the occurrence of high light-induced photooxidative sunburn by removing hydrogen peroxide from the peel. Overall, low light intensity was beneficial for the accumulation of anthocyanin and did not cause photooxidative sunburn, whereas natural light had the opposite effect on the apple peel at low nighttime temperatures. This study provides an insight into the mechanisms by which low temperatures induce apple coloration and high light intensity causes photooxidative sunburn.

19.
J Am Chem Soc ; 143(32): 12784-12790, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34352177

RESUMO

Nonribosomal peptide synthesis in bacteria has endowed cyclic peptides with fascinating structural complexity via incorporating nonproteinogenic amino acids. These bioactive cyclic peptides provide interesting structural motifs for exploring total synthesis and medicinal chemistry studies. Cyclic glycopeptide mannopeptimycins exhibit antibacterial activity against antibiotic-resistant Gram-positive pathogens and act as the lipid II binder to stop bacterial cell wall biosynthesis. Here, we report a strategy streamlining solution phase-solid phase synthesis and chemical ligation-mediated peptide cyclization for the total synthesis of mannopeptimycin ß.


Assuntos
Aminoácidos/química , Glicopeptídeos/síntese química , Imidazolidinas/química , Glicopeptídeos/química , Estrutura Molecular
20.
Food Funct ; 12(14): 6240-6253, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34128015

RESUMO

To prepare a nutritional supplement using silkworm pupae oil (SPO) as a feedstock, a microfluidic reactor with a smart hydrogel immobilized lipase was first constructed to reduce the relative content of palmitic acid at sn-1,3 and improve the nutritional function. The effects of flow rate, reaction temperature, and substrate molar ratio were investigated. In vitro digestion and pH-stat models were employed to analyze the digestion feature after the modification of SPO, while HPLC-ELSD, zeta potential, DSC, and TGA were used to evaluate the nutritional function. The relative content of "OOO" and "OPO" type triglycerides was increased by 49.48% and 107.67%, and that of palmitic acid at sn-1,3 was decreased by 49.61% in 10 s. After the verification of the in vitro digestion model, the fatty acid release rate of the modified SPO was significantly improved by 22.07%, indicating the nutritional function improvement of SPO. Therefore, the nutritional function of SPO has been improved successfully by the application of a microchannel reactor with photo-immobilized lipase, which could set a reference for the utilization of insect oil resources.


Assuntos
Bombyx/química , Hidrogéis/química , Lipase/química , Óleos/química , Pupa/química , Animais , Catálise , Cromatografia Líquida de Alta Pressão/métodos , Suplementos Nutricionais , Enzimas Imobilizadas/química , Ácidos Graxos/análise , Humanos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura/métodos , Ciências da Nutrição/métodos , Ácido Palmítico/análise , Termodinâmica , Triglicerídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...