RESUMO
The Gram-negative marine bacterium Vibrio anguillarum is able to cause vibriosis with hemorrhagic septicemia in many fish species, and iron acquisition is a critical step for virulence. Despite the fact that genes specific to certain processes of iron transport have been studied, the iron-regulated circuits of the V. anguillarum strains remain poorly understood. In this study, we showed that in V. anguillarum strain 775, iron could affect the expression of a number of critical metabolic pathways and virulence factors. The global iron uptake regulator VaFur is the major actor to control these processes for the bacterium to respond to different iron conditions. A VaFur binding motif was identified to distinguish directly and indirectly regulated targets. The absence of VaFur resulted in the aberrant expression of most iron acquisition determinants under rich-iron conditions. A similar regulation pattern was also observed in the transcription of genes coding for the type VI secretion system. The expression of peroxidase genes is positively controlled by VaFur to prevent iron toxicity, and the deletion of Vafur caused impaired growth in the presence of iron and H2O2. VaFur also upregulates some virulence factors under limited-iron conditions, including metalloprotease EmpA and motility, which are likely critical for the high virulence of V. anguillarum 775. The deletion of VaFur led to reduced swimming motility and decreased extracellular protease activity under limited-iron conditions, thereby leading to attenuated pathogenicity. Our study provides more evidence to better understand the VaFur regulon and its role in the pathogenesis of V. anguillarum.IMPORTANCEVibriosis, the most common disease caused by marine bacteria belonging to the genus Vibrio, leads to massive mortality of economical aquatic organisms in Asia. Iron is one of the most important trace elements, and its acquisition is a critical battle occurring between the host and the pathogen. However, excess iron is harmful to cells, so iron utilization needs to be strictly controlled to adapt to different conditions. This process is mediated by the global iron uptake regulator Fur, which acts as a repressor when iron is replete. On the other hand, free iron in the host is limited, so the reduced virulence of the Δfur mutant should not be directly caused by abnormally regulated iron uptake. The significance of this work lies in uncovering the mechanism by which the deletion of Fur causes reduced virulence in Vibrio anguillarum and identifying the critical virulence factors that function under limited-iron conditions.
RESUMO
Thermostability, which is essential for the functional performance of enzymes, is largely determined by intramolecular physical interactions. Although many tools have been developed, existing computational methods have struggled to find the universal principles of protein thermostability. Recent advancements in structural proteomics have been driven by the introduction of deep neural networks such as AlphaFold2 and ESMFold. These innovations have enabled the characterization of protein structures with unprecedented speed and accuracy. Here, we introduce qProtein, a Python-implemented workflow designed for the quantitative analysis of physical interactions on the scale of structural proteomics. This platform accepts protein sequences as input and produces four structural features, including hydrophobic clusters, hydrogen bonds, electrostatic interactions, and disulfide bonds. To demonstrate the use of qProtein, we investigate the structural features related to protein thermostability in six glycoside hydrolase (GH) families, comprising a total of 3,811 protein structures. Our results indicate that in five enzyme families (GH11, GH12, GH5_2, GH10, and GH48), the thermophilic enzymes have a larger average area of hydrophobic clusters compared to the nonthermophilic enzymes within each family. Furthermore, our analysis of the local-structure regions reveals that the hydrophobic clusters are predominantly distributed in the distal regions of the GH11 enzymes. In addition, the average hydrophobic cluster area of the thermophilic enzymes is significantly higher than that of the nonthermophilic enzymes in the distal regions of the GH11 enzymes. Therefore, qProtein is a well-suited platform for analyzing the structural features of thermal stability at the level of structural proteomics. We provide the source code for qProtein at https://github.com/bj600800/qProtein, and the web server is available at http://qProtein.sdu.edu.cn:8888.
Assuntos
Proteômica , Proteômica/métodos , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica , Estabilidade Proteica , Modelos Moleculares , Temperatura , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Proteínas/química , Proteínas/metabolismo , Ligação de HidrogênioRESUMO
The past two decades has witnessed a remarkable increase in the number of microbial genomes retrieved from marine systems1,2. However, it has remained challenging to translate this marine genomic diversity into biotechnological and biomedical applications3,4. Here we recovered 43,191 bacterial and archaeal genomes from publicly available marine metagenomes, encompassing a wide range of diversity with 138 distinct phyla, redefining the upper limit of marine bacterial genome size and revealing complex trade-offs between the occurrence of CRISPR-Cas systems and antibiotic resistance genes. In silico bioprospecting of these marine genomes led to the discovery of a novel CRISPR-Cas9 system, ten antimicrobial peptides, and three enzymes that degrade polyethylene terephthalate. In vitro experiments confirmed their effectiveness and efficacy. This work provides evidence that global-scale sequencing initiatives advance our understanding of how microbial diversity has evolved in the oceans and is maintained, and demonstrates how such initiatives can be sustainably exploited to advance biotechnology and biomedicine.
Assuntos
Organismos Aquáticos , Biodiversidade , Bioprospecção , Mapeamento Geográfico , Metagenoma , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/isolamento & purificação , Archaea/genética , Archaea/classificação , Bactérias/genética , Bactérias/classificação , Tecnologia Biomédica , Bioprospecção/tendências , Biotecnologia , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/isolamento & purificação , Sistemas CRISPR-Cas/genética , Farmacorresistência Bacteriana/genética , Genoma Arqueal/genética , Genoma Bacteriano/genética , Metagenoma/genética , Oceanos e Mares , Filogenia , Água do Mar/microbiologia , Microbiologia da ÁguaRESUMO
Liposome-based drug delivery systems have been widely used in drug and gene delivery. However, issues such as instability, immune clearance, and poor targeting have significantly limited their clinical utility. Consequently, there is an urgent need for innovative strategies to improve liposome performance. In this study, we explore the interaction mechanisms of hyaluronic acid (HA), a linear anionic polysaccharide composed of repeating disaccharide units of d-glucuronic acid and N-acetyl-d-glucosamine connected by alternating ß-1,3 and ß-1,4 glycosidic linkages, and its octanoylated derivates (OHA) with liposomes using extensive coarse-grained molecular dynamics simulations. The octyl moieties of OHA spontaneously inserted into the phospholipid bilayer of liposomes, leading to their effective coating onto the surface of liposome and enhancing their structural stability. Furthermore, encapsulating liposome with OHA neutralized their surface potential, interfering with the formation of a protein corona known to contribute to liposomal immune clearance. Importantly, the encapsulated OHA maintained its selectivity and therefore targeting ability for CD44, which is often overexpressed in tumor cells. These molecular-scale findings shed light on the interaction mechanisms between HA and liposomes and will be useful for the development of next-generation liposome-based drug delivery systems.
RESUMO
Protease secretion is crucial for degrading nematode cuticles using nematophagous fungus Purpureocillium lilacinum, but the secretion pattern of protease remains poorly understood. This study aimed to explore the degradation mechanism of proteases by investigating the characteristics of protease secretion under various carbon and nitrogen sources, and different carbon to nitrogen (C:N) ratios in P. lilacinum. The results showed that corn flour as a carbon source and yeast extract as a nitrogen source specifically induced protease secretion in P. lilacinum. P. lilacinum produced significant amounts of gelatinase and casein enzyme at C:N ratios of 10:1, 20:1, and 40:1, indicating that higher C:N ratios were more beneficial for secreting extracellular proteases. Proteomic analysis revealed 14 proteases, including 4 S8 serine endopeptidases and one M28 aminopeptidase. Among four S8 serine peptidases, Alp1 exhibited a high secretion level at C:N ratio less than 5:1, whereas PR1C, PR1D, and P32 displayed higher secretion levels at higher C:N ratios. In addition, the transcription levels of GATA transcription factors were investigated, revealing that Asd-4, A0A179G170, and A0A179HGL4 were more prevalent at a C:N ratio of 40:1. In contrast, the transcription levels of SREP, AreA, and NsdD were higher at lower C:N ratios. The putative regulatory profile of extracellular protease production in P. lilacinum, induced by different C:N ratios, was analyzed. The findings offered insights into the complexity of protease production and aided in the hydrolytic degradation of nematode cuticles.
RESUMO
Glucose transporters GLUT1 belong to the major facilitator superfamily and are essential to human glucose uptake. The overexpression of GLUT1 in tumor cells designates it as a pivotal target for glycoconjugate anticancer drugs. However, the interaction mechanism of glycoconjugate drugs with GLUT1 remains largely unknown. Here, we employed all-atom molecular dynamics simulations, coupled to steered and umbrella sampling techniques, to examine the thermodynamics governing the transport of glucose and two glycoconjugate drugs (i.e., 6-D-glucose-conjugated methane sulfonate and 6-D-glucose chlorambucil) by GLUT1. We characterized the specific interactions between GLUT1 and substrates at different transport stages, including substrate recognition, transport, and releasing, and identified the key residues involved in these procedures. Importantly, our results described, for the first time, the free energy profiles of GLUT1-transporting glycoconjugate drugs, and demonstrated that H160 and W388 served as important gates to regulate their transport via GLUT1. These findings provide novel atomic-scale insights for understanding the transport mechanism of GLUT1, facilitating the discovery and rational design of GLUT1-targeted anticancer drugs.
Assuntos
Transportador de Glucose Tipo 1 , Glicoconjugados , Simulação de Dinâmica Molecular , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/química , Glicoconjugados/metabolismo , Glicoconjugados/química , Humanos , Glucose/metabolismo , Transporte Biológico , TermodinâmicaRESUMO
Biological control of pests and pathogens has attracted much attention due to its green, safe and effective characteristics. However, it faces the dilemma of insignificant effects in large-scale applications. Therefore, an in-depth exploration of the metabolic potential of biocontrol fungi based on big omics data is crucial for a comprehensive and systematic understanding of the specific modes of action operated by various biocontrol fungi. This article analyzes the preferences for extracellular carbon and nitrogen source degradation, secondary metabolites (nonribosomal peptides, polyketide synthases) and their product characteristics and the conversion relationship between extracellular primary metabolism and intracellular secondary metabolism for eight different filamentous fungi with characteristics appropriate for the biological control of bacterial pathogens and phytopathogenic nematodes. Further clarification is provided that Paecilomyces lilacinus, encoding a large number of hydrolase enzymes capable of degrading pathogen protection barrier, can be directly applied in the field as a predatory biocontrol fungus, whereas Trichoderma, as an antibiosis-active biocontrol control fungus, can form dominant strains on preferred substrates and produce a large number of secondary metabolites to achieve antibacterial effects. By clarifying the levels of biological control achievable by different biocontrol fungi, we provide a theoretical foundation for their application to cropping habitats.
Assuntos
Fungos , Fungos/metabolismo , Fungos/genética , Metabolismo Secundário , Carbono/metabolismo , Agentes de Controle Biológico/metabolismo , Controle Biológico de Vetores/métodos , Nitrogênio/metabolismo , Animais , Metabolômica/métodosRESUMO
To mitigate the environmental risks posed by the accumulation of antibiotic mycelial dregs (AMDs), this study first attempted over 200 tons of mass production fermentation (MP) using tylosin and spectinomycin mycelial dregs alongside pilot-scale fermentation (PS) for comparison, utilizing the integrated-omics and qPCR approaches. Co-fermentation results showed that both antibiotics were effectively removed in all treatments, with an average removal rate of 92%. Antibiotic resistance gene (ARG)-related metabolic pathways showed that rapid degradation of antibiotics was associated with enzymes that inactivate macrolides and aminoglycosides (e.g., K06979, K07027, K05593). Interestingly, MP fermentations with optimized conditions had more efficient ARGs removal because homogenization permitted faster microbial succession, with more stable removal of antibiotic resistant bacteria and mobile genetic elements. Moreover, Bacillus reached 75% and secreted antioxidant enzymes that might inhibit horizontal gene transfer of ARGs. The findings confirmed the advantages of MP fermentation and provided a scientific basis for other AMDs.
Assuntos
Antibacterianos , Fermentação , Espectinomicina , Tilosina , Tilosina/farmacologia , Antibacterianos/farmacologia , Espectinomicina/farmacologia , Micélio/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Biodegradação Ambiental , Genes BacterianosRESUMO
The blood-brain barrier (BBB) is instrumental in clearing toxic metabolites from the brain, such as amyloid-ß (Aß) peptides, and in delivering essential nutrients to the brain, like insulin. In Alzheimer's disease (AD) brain, increased Aß levels are paralleled by decreased insulin levels, which are accompanied by insulin signaling deficits at the BBB. Thus, we investigated the impact of insulin-like growth factor and insulin receptor (IGF1R and IR) signaling on Aß and insulin trafficking at the BBB. Following intravenous infusion of an IGF1R/IR kinase inhibitor (AG1024) in wild-type mice, the BBB trafficking of 125I radiolabeled Aß peptides and insulin was assessed by dynamic SPECT/CT imaging. The brain efflux of [125I]iodo-Aß42 decreased upon AG1024 treatment. Additionally, the brain influx of [125I]iodoinsulin, [125I]iodo-Aß42, [125I]iodo-Aß40, and [125I]iodo-BSA (BBB integrity marker) was decreased, increased, unchanged, and unchanged, respectively, upon AG1024 treatment. Subsequent mechanistic studies were performed using an in vitro BBB cell model. The cell uptake of [125I]iodoinsulin, [125I]iodo-Aß42, and [125I]iodo-Aß40 was decreased, increased, and unchanged, respectively, upon AG1024 treatment. Further, AG1024 reduced the phosphorylation of insulin signaling kinases (Akt and Erk) and the membrane expression of Aß and insulin trafficking receptors (LRP-1 and IR-ß). These findings reveal that insulin signaling differentially regulates the BBB trafficking of Aß peptides and insulin. Moreover, deficits in IGF1R and IR signaling, as observed in the brains of type II diabetes and AD patients, are expected to increase Aß accumulation while decreasing insulin delivery to the brain, which has been linked to the progression of cognitive decline in AD.
Assuntos
Peptídeos beta-Amiloides , Barreira Hematoencefálica , Insulina , Transdução de Sinais , Animais , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Insulina/metabolismo , Radioisótopos do Iodo , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tirfostinas/farmacologiaRESUMO
Core histones in the nucleosome are subject to a wide variety of posttranslational modifications (PTMs), such as methylation, phosphorylation, ubiquitylation, and acetylation, all of which are crucial in shaping the structure of the chromatin and the expression of the target genes. A putative histone methyltransferase LaeA/Lae1, which is conserved in numerous filamentous fungi, functions as a global regulator of fungal growth, virulence, secondary metabolite formation, and the production of extracellular glycoside hydrolases (GHs). LaeA's direct histone targets, however, were not yet recognized. Previous research has shown that LaeA interacts with core histone H2B. Using S-adenosyl-L-methionine (SAM) as a methyl group donor and recombinant human histone H2B as the substrate, it was found that Penicillium oxalicum LaeA can transfer the methyl groups to the C-terminal lysine (K) 108 and K116 residues in vitro. The H2BK108 and H2BK116 sites on recombinant histone correspond to P. oxalicum H2BK122 and H2BK130, respectively. H2BK122A and H2BK130A, two mutants with histone H2B K122 or K130 mutation to alanine (A), were constructed in P. oxalicum. The mutants H2BK122A and H2BK130A demonstrated altered asexual development and decreased extracellular GH production, consistent with the findings of the laeA gene deletion strain (ΔlaeA). The transcriptome data showed that when compared to wild-type (WT) of P. oxalicum, 38 of the 47 differentially expressed (fold change ≥ 2, FDR ≤ 0.05) genes that encode extracellular GHs showed the same expression pattern in the three mutants ΔlaeA, H2BK122A, and H2BK130A. The four secondary metabolic gene clusters that considerably decreased expression in ΔlaeA also significantly decreased in H2BK122A or H2BK130A. The chromatin of promotor regions of the key cellulolytic genes cel7A/cbh1 and cel7B/eg1 compacted in the ΔlaeA, H2BK122A, and H2BK130A mutants, according to the results of chromatin accessibility real-time PCR (CHART-PCR). The chromatin accessibility index dropped. The histone binding pocket of the LaeA-methyltransf_23 domain is compatible with particular histone H2B peptides, providing appropriate electrostatic and steric compatibility to stabilize these peptides, according to molecular docking. The findings of the study demonstrate that H2BK122 and H2BK130, which are histone targets of P. oxalicum LaeA in vitro, are crucial for fungal conidiation, the expression of gene clusters encoding secondary metabolites, and the production of extracellular GHs.
Assuntos
Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Glicosídeo Hidrolases , Histonas , Lisina , Família Multigênica , Penicillium , Metabolismo Secundário , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Histonas/genética , Lisina/metabolismo , Lisina/biossíntese , Metilação , Penicillium/genética , Penicillium/enzimologia , Penicillium/metabolismo , Penicillium/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Reprodução Assexuada/genética , Metabolismo Secundário/genéticaRESUMO
Bisphenol A (BPA) in seawater tends to be deposited in coastal sediments. However, its degradation under tidal oscillations has not been explored comprehensively. Hydroxyl radicals (·OH) can be generated through Fe cycling under redox oscillations, which have a strong oxidizing capacity. This study focused on the contribution of Fe-mediated production of ·OH in BPA degradation under darkness. The removal of BPA was investigated by reoxygenating six natural coastal sediments, and three redox cycles were applied to prove the sustainability of the process. The importance of low reactivity Fe(II) in the production of ·OH was investigated, specifically, Fe(II) with carbonate and Fe(II) within goethite, hematite and magnetite. The degradation efficiency of BPA during reoxygenation of sediments was 76.78-94.82%, and the contribution of ·OH ranged from 36.74% to 74.51%. The path coefficient of ·OH on BPA degradation reached 0.6985 and the indirect effect of low reactivity Fe(II) on BPA degradation by mediating ·OH production reached 0.5240 obtained via partial least squares path modeling (PLS-PM). This study emphasizes the importance of low reactivity Fe(II) in ·OH production and provides a new perspective for the role of tidal-induced ·OH on the fate of refractory organic pollutants under darkness.
Assuntos
Compostos Benzidrílicos , Fenóis , Fenóis/metabolismo , Compostos Benzidrílicos/metabolismo , Radical Hidroxila , Compostos Ferrosos , OxirreduçãoRESUMO
Background: A strong body of evidence suggests that cerebrovascular pathologies augment the onset and progression of Alzheimer's disease (AD). One distinctive aspect of this cerebrovascular dysfunction is the degeneration of brain pericytes-often overlooked supporting cells of blood-brain barrier endothelium. Objective: The current study investigates the influence of pericytes on gene and protein expressions in the blood-brain barrier endothelium, which is expected to facilitate the identification of pathophysiological pathways that are triggered by pericyte loss and lead to blood-brain barrier dysfunction in AD. Methods: Bioinformatics analysis was conducted on the RNA-Seq expression counts matrix (GSE144474), which compared solo-cultured human blood-brain barrier endothelial cells against endothelial cells co-cultured with human brain pericytes in a non-contact model. We constructed a similar cell culture model to verify protein expression using western blots. Results: The insulin resistance and ferroptosis pathways were found to be enriched. Western blots of the insulin receptor and heme oxygenase expressions were consistent with those observed in RNA-Seq data. Additionally, we observed more than 5-fold upregulation of several genes associated with neuroprotection, including insulin-like growth factor 2 and brain-derived neurotrophic factor. Conclusions: Results suggest that pericyte influence on blood-brain barrier endothelial gene expression confers protection from insulin resistance, iron accumulation, oxidative stress, and amyloid deposition. Since these are conditions associated with AD pathophysiology, they imply mechanisms by which pericyte degeneration could contribute to disease progression.
Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Células Endoteliais , Pericitos , Pericitos/metabolismo , Pericitos/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Células Endoteliais/metabolismo , Técnicas de Cocultura , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Regulação da Expressão Gênica , Resistência à Insulina/fisiologiaRESUMO
Brown algae are rich in biostimulants that not only stimulate the overall development and growth of plants but also have great beneficial effects on the whole soil-plant system. However, alginate, the major component of brown algae, is comparatively difficult to degrade. The cost of preparing alginate oligosaccharides (AOSs) is still too high to produce seaweed fertilizer. In this work, the marine bacterium Vibrio sp. B1Z05 is found to be capable of efficient alginate depolymerization and harbors an extended pathway for alginate metabolism. The B1Z05 extracellular cell-free supernatant exhibited great potential for AOS production at low cost, which, together with cellulase, can efficiently hydrolyze seaweed. The brown algal hydrolysis rates were significantly greater than those of the commercial alginate lyase product CE201, and the obtained seaweed extracts were rich in phytohormones. This work provides a low-cost but efficient strategy for the sustainable production of desirable AOSs and seaweed fertilizer.
Assuntos
Celulase , Phaeophyceae , Alga Marinha , Celulase/metabolismo , Hidrólise , Fertilizantes , Polissacarídeo-Liases/metabolismo , Alga Marinha/metabolismo , Alginatos/metabolismo , Oligossacarídeos/metabolismoRESUMO
A strong correlation between gut microbes and host health has been observed in numerous gut metagenomic cohort studies. However, the underlying mechanisms governing host-microbe interactions in the gut remain largely unknown. Here we report that the gut commensal Christensenella minuta modulates host metabolism by generating a previously undescribed class of secondary bile acids with 3-O-acylation substitution that inhibit the intestinal farnesoid X receptor. Administration of C. minuta alleviated features of metabolic disease in high fat diet-induced obese mice associated with a significant increase in these acylated bile acids, which we refer to as 3-O-acyl-cholic acids. Specific knockout of intestinal farnesoid X receptor in mice counteracted the beneficial effects observed in their wild-type counterparts. Finally, we showed that 3-O-acyl-CAs were prevalent in healthy humans but significantly depleted in patients with type 2 diabetes. Our findings indicate a role for C. minuta and acylated bile acids in metabolic diseases.
Assuntos
Ácidos e Sais Biliares , Diabetes Mellitus Tipo 2 , Humanos , Animais , Camundongos , Clostridiales , Dieta HiperlipídicaRESUMO
The nitrite efficient utilization microorganism Wickerhamomyces anomalus RZWP01 was identified. Using nitrite and ammonium as the sole nitrogen source, the nitrogen removal rate of W. anomalus RZWP01 was 97.4% and 87.1%, respectively. W. anomalus RZWP01 grew well in the nitrite medium with glucose or xylose as the only carbon source. However, the W. anomalus RZWP01 cannot live on the nitrite medium with lactose, citric acid, and methanol as the only carbon source. The maximal cell concentration occurred in the nitrite medium with glucose as the only carbon source at a C/N ratio of 20 for 48 h, reaching 8.92 × 108 cell mL-1. W. anomalus RZWP01 was the first reported yeast that can efficiently utilize nitrite. The isolation and identification of W. anomalus RZWP01 enriched the microbial resources of nitrite-degrading microorganisms and provided functional microorganisms for the water treatment of sustainable aquaculture.
RESUMO
Saccharides are a popular group of stabilizers in liquid, frozen and freeze dried protein formulations. The current work reviewed the stabilization mechanisms of three groups of saccharides: (i) Disaccharides, specifically sucrose and trehalose; (ii) cyclodextrins (CDs), a class of cyclic oligosaccharides; and (iii) dextrans, a class of polysaccharides. Compared to sucrose, trehalose exhibits a more pronounced preferential exclusion effect in liquid protein formulations, due to its stronger interaction with water molecules. However, trehalose obtains higher phase separation and crystallization propensity in frozen solutions, resulting in the loss of its stabilization function. In lyophilized formulations, sucrose has a higher crystallization propensity. Besides, its glass matrix is less homogeneous than that of trehalose, thus undermining its lyoprotectant function. Nevertheless, the hygroscopic nature of trehalose may result in high water absorption upon storage. Among all the CDs, the ß form is believed to have stronger interactions with proteins than the α- and γ-CDs. However, the stabilization effect, brought about by CD-protein interactions, is case-by-case - in some examples, such interactions can promote protein destabilization. The stabilization effect of hydroxypropyl-ß-cyclodextrin (HPßCD) has been extensively studied. Due to its amphiphilic nature, it can act as a surface-active agent in preventing interfacial stresses. Besides, it is a dual functional excipient in freeze dried formulations, acting as an amorphous bulking agent and lyoprotectant. Finally, dextrans, when combined with sucrose or trehalose, can be used to produce stable freeze dried protein formulations. A strong stabilization effect can be realized by low molecular weight dextrans. However, the terminal glucose in dextrans yields protein glycation, which warrants extra caution during formulation development.
Assuntos
Ciclodextrinas , Trealose , Trealose/química , Sacarose/química , Ciclodextrinas/química , Dextranos/química , Excipientes/química , Água/química , LiofilizaçãoRESUMO
Chitinase plays a vital role in the efficient biotransformation of the chitin substrate. This study aimed to modify and elucidate the contribution of the relatively conserved residues in the active site architecture of a thermophilic chitinase SsChi18A from Streptomyces sp. F-3 in processive catalysis. The enzymatic activity on colloidal chitin increased to 151%, 135%, and 129% in variants Y286W, E287A, and K186A compared with the wild type (WT). Also, the apparent processive parameter G2/G1 was lower in the variants compared to the WT, indicating the essential role of Tyr-286, Glu-287, and Lys-186 in processive catalysis. Additionally, the enzymatic activity on the crystalline chitin of F48W and double mutants F48W/Y209F and F48W/Y286W increased by 35%, 16%, and 36% compared with that for WT. Molecular dynamics simulations revealed that the driving force of processive catalysis might be related to the changes in interaction energy. This study provided a rational design strategy targeting relatively conserved residues to enhance the catalytic activity of GH18 processive chitinases.
Assuntos
Quitinases , Domínio Catalítico , Quitinases/genética , Quitinases/química , Quitinases/metabolismo , Quitina/química , Simulação de Dinâmica MolecularRESUMO
Multidrug-resistant Gram-negative bacteria present an urgent and formidable threat to the global public health. Polymyxins have emerged as a last-resort therapy against these 'superbugs'; however, their efficacy against pulmonary infection is poor. In this study, we integrated chemical biology and molecular dynamics simulations to examine how the alveolar lung surfactant significantly reduces polymyxin antibacterial activity. We discovered that lung surfactant is a phospholipid-based permeability barrier against polymyxins, compromising their efficacy against target bacteria. Next, we unraveled the structure-interaction relationship between polymyxins and lung surfactant, elucidating the thermodynamics that govern the penetration of polymyxins through this critical surfactant layer. Moreover, we developed a novel analog, FADDI-235, which exhibited potent activity against Gram-negative bacteria, both in the presence and absence of lung surfactant. These findings shed new light on the sequestration mechanism of lung surfactant on polymyxins and importantly pave the way for the rational design of new-generation lipopeptide antibiotics to effectively treat Gram-negative bacterial pneumonia.
Assuntos
Antibacterianos , Polimixinas , Polimixinas/farmacologia , Antibacterianos/química , Lipopeptídeos , Bactérias , Tensoativos , PulmãoRESUMO
Brewer spent grains (BSGs) are one of the most abundant by-products in brewing industry. Due to microbiological instability and high perishability, the efficient degradation of BSGs is of environmental and economic importance. Streptomyces sp. F-3 could grow in the medium with BSGs as the only carbon and nitrogen source. Proteome mass spectrometry revealed that a GH10 xylanase SsXyn10A could be secreted in large quantities. SsXyn10A showed optimum activity at pH 7.0 and 60 °C. SsXyn10A exhibited excellent thermostability which retained approximately 100% and 58% after incubation for 5 h at 50 and 60 °C. SsXyn10A displayed high activity to beechwood xylan (BX) and wheat arabinoxylan (WAX). SsXyn10A is active against xylotetracose (X4), xylopentose (X5), and xylohexose (X6) to produce main products xylobiose (X2) and xylotriose (X3). Ssxyn10A showed synergistic effects with commercial cellulase on BSGs hydrolyzing into soluble sugar. In addition, the steam explosion pretreatment of BSGs as the substrate produced twice as much reducing sugar as the degradation of the original substrate. This study will contribute to efficient utilization of BSGs and provide a thermostable GH10 xylanase which has potential application in biomass hydrolysis.
RESUMO
Trichothecenes are highly toxic mycotoxins produced by Fusarium fungi, while TRI101/201 family enzymes play a crucial role in detoxification through acetylation. Studies on the substrate specificity and catalytic kinetics of TRI101/201 have revealed distinct kinetic characteristics, with significant differences observed in catalytic efficiency toward deoxynivalenol, while the catalytic efficiency for T-2 toxin remains relatively consistent. In this study, we used structural bioinformatics analysis and a molecular dynamics simulation workflow to investigate the mechanism underlying the differential catalytic activity of TRI101/201. The findings revealed that the binding stability between trichothecenes and TRI101/201 hinges primarily on a hydrophobic cage structure within the binding site. An intrinsic disordered loop, termed loop cover, defined the evolutionary patterns of the TRI101/201 protein family that are categorized into four subfamilies (V1/V2/V3/M). Furthermore, the unique loop displayed different conformations among these subfamilies' structures, which served to disrupt (V1/V2/V3) or reinforce (M) the hydrophobic cages. The disrupted cages enhanced the water exposure of the hydrophilic moieties of substrates like deoxynivalenol and thereby hindered their binding to the catalytic sites of V-type enzymes. In contrast, this water exposure does not affect substrates like T-2 toxin, which have more hydrophobic substituents, resulting in a comparable catalytic efficiency of both V- and M-type enzymes. Overall, our studies provide theoretical support for understanding the catalytic mechanism of TRI101/201, which shows how an intrinsic disordered loop could impact the protein-ligand binding and suggests a direction for rational protein design in the future.