Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38946068

RESUMO

Dry eye disease (DED) is a chronic multifactorial ocular surface disease mainly caused by the instability of tear film, characterized by a series of ocular discomforts and even visual disorders. Oxidative stress has been recognized as an upstream factor in DED development. Diquafosol sodium (DQS) is an agonist of the P2Y2 receptor to restore the integrity/stability of the tear film. With the ability to alternate between Ce3+ and Ce4+, cerium oxide nanozymes could scavenge overexpressed reactive oxygen species (ROS). Hence, a DQS-loaded cerium oxide nanozyme was designed to boost the synergistic treatment of DED. Cerium oxide with branched polyethylenimine-graft-poly(ethylene glycol) as nucleating agent and dispersant was fabricated followed with DQS immobilization via a dynamic phenylborate ester bond, obtaining the DQS-loaded cerium oxide nanozyme (defined as Ce@PBD). Because of the ability to mimic the cascade processes of superoxide dismutase and catalase, Ce@PBD could scavenge excessive accumulated ROS, showing strong antioxidant and anti-inflammatory properties. Meanwhile, the P2Y2 receptors in the conjunctival cells could be stimulated by DQS in Ce@PBD, which can relieve the incompleteness and instability of the tear film. The animal experiments demonstrated that Ce@PBD significantly restored the defect of the corneal epithelium and increased the number of goblet cells, with the promotion of tear secretion, which was the best among commercial DQS ophthalmic solutions.

2.
Front Physiol ; 15: 1427385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974516

RESUMO

Introduction: Plumbagin is an important phytochemical and has been reported to exhibit potent larvicidal activity against several insect pests, However, the insecticidal mechanism of plumbagin against pests is still poorly understood. This study aimed to investigate the insecticidal activities of plumbagin and the underlying molecular mechanisms against a devastating agricultural pest, the fall armyworm Spodoptera frugiperda. Methods: The effects of plumbagin on S. frugiperda larval development and the activities of two detoxification enzymes were initially examined. Next, transcriptomic changes in S. frugiperda after plumbagin treatment were investigated. Furthermore, RNA-seq results were validated by qPCR. Results: Plumbagin exhibited a high larvicidal activity against the second and third instar larvae of S. frugiperda with 72 h LC50 of 0.573 and 2.676 mg/g, respectively. The activities of the two detoxification enzymes carboxylesterase and P450 were significantly increased after 1.5 mg/g plumbagin treatment. Furthermore, RNA-seq analysis provided a comprehensive overview of complex transcriptomic changes in S. frugiperda larvae in response to 1.5 mg/g plumbagin exposure, and revealed that plumbagin treatment led to aberrant expression of a large number of genes related to nutrient and energy metabolism, humoral immune response, insect cuticle protein, chitin-binding proteins, chitin synthesis and degradation, insect hormone, and xenobiotic detoxification. The qPCR results further validated the reproducibility and reliability of the transcriptomic data. Discussion: Our findings provide a valuable insight into understanding the insecticidal mechanism of the phytochemical plumbagin.

3.
J Pain Res ; 17: 2111-2120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903397

RESUMO

Objective: To separate the resting-state network of patients with dental pain using independent component analysis (ICA) and analyze abnormal changes in functional connectivity within as well as between the networks. Patients and Methods: Twenty-three patients with dental pain and 30 healthy controls participated in this study. We extracted the resting-state functional network components of both using ICA. Functional connectivity differences within 14 resting-state brain networks were analyzed at the voxel level. Directional interactions between networks were analyzed using Granger causality analysis. Subsequently, functional connectivity values and causal coefficients were assessed for correlations with clinical parameters. Results: Compared to healthy controls, we found enhanced functional connectivity in the left superior temporal gyrus of anterior protrusion network and the right Rolandic operculum of auditory network in patients with dental pain (p<0.01 and cluster-level p<0.05, Gaussian random field corrected). In contrast, functional connectivity of the right precuneus in the precuneus network was reduced, and were significantly as well as negatively correlated to those of the Visual Analogue Scale (r=-4.93, p=0.017), Hamilton Anxiety Scale (r=-0.46, p=0.027), and Hamilton Depression Scale (r=-0.563, p<0.01), using the Spearman correlation analysis. Regarding the causal relationship between resting-state brain networks, we found increased connectivity from the language network to the precuneus in patients with dental pain (p<0.05, false discovery rate corrected). However, the increase in causal coefficients from the verbal network to the precuneus network was independent of clinical parameters. Conclusion: Patients with toothache exhibited abnormal functional changes in cognitive-emotion-related brain networks, such as the salience, auditory, and precuneus networks, thereby offering a new imaging basis for understanding central neural mechanisms in dental pain patients.

4.
Hum Reprod ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942602

RESUMO

STUDY QUESTION: Can pregnancy outcomes following fresh elective single embryo transfer (eSET) in gonadotropin-releasing hormone (GnRH) antagonist protocols increase using a gonadotropin (Gn) step-down approach with cessation of GnRH antagonist on the day of hCG administration (hCG day) in patients with normal ovarian response? SUMMARY ANSWER: The modified GnRH antagonist protocol using the Gn step-down approach and cessation of GnRH antagonist on the hCG day is effective in improving live birth rates (LBRs) per fresh eSET cycle. WHAT IS KNOWN ALREADY: Currently, there is no consensus on optimal GnRH antagonist regimens. Studies have shown that fresh GnRH antagonist cycles result in poorer pregnancy outcomes than the long GnRH agonist (GnRHa) protocol. Endometrial receptivity is a key factor that contributes to this phenomenon. STUDY DESIGN, SIZE, DURATION: An open label randomized controlled trial (RCT) was performed between November 2021 and August 2022. There were 546 patients allocated to either the modified GnRH antagonist or the conventional antagonist protocol at a 1:1 ratio. PARTICIPANTS/MATERIALS, SETTING, METHODS: Both IVF and ICSI cycles were included, and the sperm samples used were either fresh or frozen from the partner, or from frozen donor ejaculates. The primary outcome was the LBRs per fresh SET cycle. Secondary outcomes included rates of implantation, clinical and ongoing pregnancy, miscarriage, and ovarian hyperstimulation syndrome (OHSS), as well as clinical outcomes of ovarian stimulation. MAIN RESULTS AND THE ROLE OF CHANCE: Baseline demographic features were not significantly different between the two ovarian stimulation groups. However, in the intention-to-treat (ITT) population, the LBRs in the modified antagonist group were significantly higher than in the conventional group (38.1% [104/273] vs. 27.5% [75/273], relative risk 1.39 [95% CI, 1.09-1.77], P = 0.008). Using a per-protocol (PP) analysis which included all the patients who received an embryo transfer, the LBRs in the modified antagonist group were also significantly higher than in the conventional group (48.6% [103/212] vs. 36.8% [74/201], relative risk 1.32 [95% CI, 1.05-1.66], P = 0.016). The modified antagonist group achieved significantly higher implantation rates, and clinical and ongoing pregnancy rates than the conventional group in both the ITT and PP analyses (P < 0.05). The two groups did not show significant differences between the number of oocytes retrieved or mature oocytes, two-pronuclear zygote (2PN) rates, the number of embryos obtained, blastocyst progression and good-quality embryo rates, early miscarriage rates, or OHSS incidence rates (P > 0.05). LIMITATIONS, REASONS FOR CAUTION: A limitation of our study was that the subjects were not blinded to the treatment allocation in the RCT trial. Only women under 40 years of age who had a good prognosis were included in the analysis. Therefore, use of the modified antagonist protocol in older patients with a low ovarian reserve remains to be investigated. In addition, the sample size for Day 5 elective SET was small, so larger trials will be required to strengthen these findings. WIDER IMPLICATIONS OF THE FINDINGS: The modified GnRH antagonist protocol using the Gn step-down approach and cessation of GnRH antagonist on hCG day improved the LBRs per fresh eSET cycle in normal responders. STUDY FUNDING/COMPETING INTEREST(S): This project was funded by grant 2022YFC2702503 from the National Key Research & Development Program of China and grant 2021140 from the Beijing Health Promotion Association. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: The RCT was registered in the Chinese Clinical Trial Registry; Study Number: ChiCTR2100053453. TRIAL REGISTRATION DATE: 21 November 2021. DATE OF FIRST PATIENT'S ENROLLMENT: 23 November 2021.

5.
ChemSusChem ; : e202400569, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773704

RESUMO

In practical operating conditions, the lithium deposition behavior is often influenced by multiple coupled factors and there is also a lack of comprehensive and long-term validation for dendrite suppression strategies. Our group previously proposed an intermittent lithiophilic model for high-performance three-dimensional (3D) composite lithium metal anode (LMA), however, the electrodeposition behavior was not discussed. To verify this model, this paper presents a modified 3D carbon cloth (CC) backbone by incorporating NiFe2O4/Fe2O3 (NFFO) nanoparticles derived from bimetallic NiFe-MOFs. Enhanced Li adsorption capacity and lithiophilic modulation were achieved by bimetallic MOFs-derivatives which prompted faster and more homogeneous Li deposition. The intermittent model was further verified in conjunction with the density functional theory (DFT) calculations and electrodeposition behaviors. As a result, the obtained Li-CC@NFFO||Li-CC@NFFO symmetric batteries exhibit prolonged lifespan and low hysteresis voltage even under ultra-high current and capacity conditions (5 mA cm-2, 10 mAh cm-2), what's more, the full battery coupled with a high mass loading (9 mg cm-2) of LiFePO4 cathode can be cycled at a high rate of 5 C, the capacity retention is up to 95.2 % before 700 cycles. This work is of great significance to understand the evolution of lithium dendrites on the 3D intermittent lithiophilic frameworks.

6.
Small ; : e2402076, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757424

RESUMO

High-rate lithium/sodium ion batteries or capacitors are the most promising functional units to achieve fast energy storage that highly depends on charge host materials. Host materials with lamellar structures are a good choice for hybrid charge storage hosts (capacitor or redox type). Emerging layered transition metal carbo-chalcogenides (TMCC) with homogeneous sulfur termination are especially attractive for charge storage. Using density functional theory calculations, six of 30 potential TMCC are screened to be stable, metallic, anisotropic in electronic conduction and mechanical properties due to the lamellar structures. Raman, infrared active modes and frequencies of the six TMCC are well assigned. Interlayer coupling, especially binding energies predict that the bulk layered materials can be easily exfoliated into 2D monolayers. Moreover, Ti2S2C, Zr2S2C are identified as the most gifted Li+/Na+ anode materials with relatively high capacities, moderate volume expansion, relatively low Li+/Na+ migration barriers for batteries or ion-hybrid capacitors. This work provides a foundation for rational materials design, synthesis, and identification of the emerging 2D family of TMCC.

7.
Protein Cell ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779805

RESUMO

Microbial communities such as those residing in the human gut are highly diverse and complex, and many with important implications in health and diseases. The effects and functions of these microbial communities are determined not only by their species compositions and diversities but also by the dynamic intra- and inter-cellular states at the transcriptional level. Powerful and scalable technologies capable of acquiring single-microbe-resolution RNA sequencing information in order to achieve comprehensive understanding of complex microbial communities together with their hosts is therefore utterly needed. Here we report the development and utilization of a droplet-based smRNA-seq (single-microbe RNA sequencing) method capable of identifying large species varieties in human samples, which we name smRandom-seq2. Together with a triple-module computational pipeline designed for the bacteria and bacteriophage sequencing data by smRandom-seq2 in four human gut samples, we established a single-cell level bacterial transcriptional landscape of human gut microbiome, which included 29,742 single microbes and 329 unique species. Distinct adaptive responses states among species in Prevotella and Roseburia genus and intrinsic adaptive strategy heterogeneity in Phascolarctobacterium succinatutens were uncovered. Additionally, we identified hundreds of novel host-phage transcriptional activity associations in the human gut microbiome. Our results indicated the smRandom-seq2 is a high-throughput and high-resolution smRNA-seq technique that is highly adaptable to complex microbial communities in real-word situations and promises new perspectives in the understanding of human microbiomes.

8.
Nat Commun ; 15(1): 2999, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589375

RESUMO

Ribose-5-phosphate (R5P) is a precursor for nucleic acid biogenesis; however, the importance and homeostasis of R5P in the intracellular parasite Toxoplasma gondii remain enigmatic. Here, we show that the cytoplasmic sedoheptulose-1,7-bisphosphatase (SBPase) is dispensable. Still, its co-deletion with transaldolase (TAL) impairs the double mutant's growth and increases 13C-glucose-derived flux into pentose sugars via the transketolase (TKT) enzyme. Deletion of the latter protein affects the parasite's fitness but is not lethal and is correlated with an increased carbon flux via the oxidative pentose phosphate pathway. Further, loss of TKT leads to a decline in 13C incorporation into glycolysis and the TCA cycle, resulting in a decrease in ATP levels and the inability of phosphoribosyl-pyrophosphate synthetase (PRPS) to convert R5P into 5'-phosphoribosyl-pyrophosphate and thereby contribute to the production of AMP and IMP. Likewise, PRPS is essential for the lytic cycle. Not least, we show that RuPE-mediated metabolic compensation is imperative for the survival of the ΔsbpaseΔtal strain. In conclusion, we demonstrate that multiple routes can flexibly supply R5P to enable parasite growth and identify catalysis by TKT and PRPS as critical enzymatic steps. Our work provides novel biological and therapeutic insights into the network design principles of intracellular parasitism in a clinically-relevant pathogen.


Assuntos
Toxoplasma , Toxoplasma/metabolismo , Difosfatos/metabolismo , Ribosemonofosfatos/metabolismo , Glicólise , Via de Pentose Fosfato
9.
Cell Rep Med ; 5(5): 101515, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38631348

RESUMO

During pregnancy, germline development is vital for maintaining the continuation of species. Recent studies have shown increased pregnancy risks in COVID-19 patients at the perinatal stage. However, the potential consequence of infection for reproductive quality in developing fetuses remains unclear. Here, we analyze the transcriptome and DNA methylome of the fetal germline following maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We find that infection at early gestational age, a critical period of human primordial germ cell specification and epigenetic reprogramming, trivially affects fetal germ cell (FGC) development. Additionally, FGC-niche communications are not compromised by maternal infection. Strikingly, both general and SARS-CoV-2-specific immune pathways are greatly activated in gonadal niche cells to protect FGCs from maternal infection. Notably, there occurs an "in advance" development tendency in FGCs after maternal infection. Our study provides insights into the impacts of maternal SARS-CoV-2 infection on fetal germline development and serves as potential clinical guidance for future pandemics.


Assuntos
COVID-19 , Feto , Células Germinativas , SARS-CoV-2 , Humanos , Feminino , COVID-19/virologia , COVID-19/imunologia , COVID-19/patologia , Gravidez , Células Germinativas/virologia , Feto/virologia , Complicações Infecciosas na Gravidez/virologia , Complicações Infecciosas na Gravidez/patologia , Gônadas/virologia , Transcriptoma/genética , Masculino , Metilação de DNA/genética , Epigênese Genética
10.
Dev Cell ; 59(9): 1146-1158.e6, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38574734

RESUMO

Transcription factors (TFs) play important roles in early embryonic development, but factors regulating TF action, relationships in signaling cascade, genome-wide localizations, and impacts on cell fate transitions during this process have not been clearly elucidated. In this study, we used uliCUT&RUN-seq to delineate a TFAP2C-centered regulatory network, showing that it involves promoter-enhancer interactions and regulates TEAD4 and KLF5 function to mediate cell polarization. Notably, we found that maternal retinoic acid metabolism regulates TFAP2C expression and function by inducing the active demethylation of SINEs, indicating that the RARG-TFAP2C-TEAD4/KLF5 axis connects the maternal-to-zygotic transition to polarization. Moreover, we found that both genomic imprinting and SNP-transferred genetic information can influence TF positioning to regulate parental gene expressions in a sophisticated manner. In summary, we propose a ternary model of TF regulation in murine embryonic development with TFAP2C as the core element and metabolic, epigenetic, and genetic information as nodes connecting the pathways.


Assuntos
Implantação do Embrião , Regulação da Expressão Gênica no Desenvolvimento , Fator de Transcrição AP-2 , Fatores de Transcrição , Animais , Feminino , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Implantação do Embrião/genética , Desenvolvimento Embrionário/genética , Redes Reguladoras de Genes , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição de Domínio TEA/metabolismo , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Tretinoína/metabolismo
11.
Cell Rep ; 43(5): 114136, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38643480

RESUMO

Embryos, originating from fertilized eggs, undergo continuous cell division and differentiation, accompanied by dramatic changes in transcription, translation, and metabolism. Chromatin regulators, including transcription factors (TFs), play indispensable roles in regulating these processes. Recently, the trophoblast regulator TFAP2C was identified as crucial in initiating early cell fate decisions. However, Tfap2c transcripts persist in both the inner cell mass and trophectoderm of blastocysts, prompting inquiry into Tfap2c's function in post-lineage establishment. In this study, we delineate the dynamics of TFAP2C during the mouse peri-implantation stage and elucidate its collaboration with the key lineage regulators CDX2 and NANOG. Importantly, we propose that de novo formation of H3K9me3 in the extraembryonic ectoderm during implantation antagonizes TFAP2C binding to crucial developmental genes, thereby maintaining its lineage identity. Together, these results highlight the plasticity of the chromatin environment in designating the genomic binding of highly adaptable lineage-specific TFs and regulating embryonic cell fates.


Assuntos
Fator de Transcrição CDX2 , Linhagem da Célula , Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Fator de Transcrição AP-2 , Animais , Cromatina/metabolismo , Camundongos , Linhagem da Célula/genética , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Fator de Transcrição CDX2/metabolismo , Fator de Transcrição CDX2/genética , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Blastocisto/metabolismo , Blastocisto/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Feminino , Histonas/metabolismo , Diferenciação Celular/genética , Ectoderma/metabolismo , Ectoderma/citologia , Desenvolvimento Embrionário/genética
12.
Anal Chem ; 96(18): 7065-7072, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652079

RESUMO

Protein allostery is commonly observed in vitro. But how protein allostery behaves in cells is unknown. In this work, a protein monomer-dimer equilibrium system was built with the allosteric effect on the binding characterized using NMR spectroscopy through mutations away from the dimer interface. A chemical shift linear fitting method was developed that enabled us to accurately determine the dissociation constant. A total of 28 allosteric mutations were prepared and grouped to negative allosteric, nonallosteric, and positive allosteric modulators. ∼ 50% of mutations displayed the allosteric-state changes when moving from a buffered solution into cells. For example, there were no positive allosteric modulators in the buffered solution but eight in cells. The change in protein allostery is correlated with the interactions between the protein and the cellular environment. These interactions presumably drive the surrounding macromolecules in cells to transiently bind to the monomer and dimer mutational sites and change the free energies of the two species differently which generate new allosteric effects. These surrounding macromolecules create a new protein allostery pathway that is only present in cells.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Regulação Alostérica , Mutação , Multimerização Proteica , Modelos Moleculares
13.
Nat Commun ; 15(1): 3287, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627412

RESUMO

Although asymmetric molecular design has been widely demonstrated effective for organic photovoltaics (OPVs), the correlation between asymmetric molecular geometry and their optoelectronic properties is still unclear. To access this issue, we have designed and synthesized several symmetric-asymmetric non-fullerene acceptors (NFAs) pairs with identical physical and optoelectronic properties. Interestingly, we found that the asymmetric NFAs universally exhibited increased open-circuit voltage compared to their symmetric counterparts, due to the reduced non-radiative charge recombination. From our molecular-dynamic simulations, the asymmetric NFA naturally exhibits more diverse molecular interaction patterns at the donor (D):acceptor (A) interface as compared to the symmetric ones, as well as higher D:A interfacial charge-transfer state energy. Moreover, it is observed that the asymmetric structure can effectively suppress triplet state formation. These advantages enable a best efficiency of 18.80%, which is one of the champion results among binary OPVs. Therefore, this work unambiguously demonstrates the unique advantage of asymmetric molecular geometry, unveils the underlying mechanism, and highlights the manipulation of D:A interface as an important consideration for future molecular design.

14.
iScience ; 27(4): 109511, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38571759

RESUMO

Ferroptosis and ferritinophagy play critical roles in various disease contexts. Herein, we observed that ferroptosis and ferritinophagy were induced both in the brains of mice with diabetes mellitus (DM) and neuronal cells after high glucose (HG) treatment, as evidenced by decreases in GPX4, SLC7A11, and ferritin levels, but increases in NCOA4 levels. Interestingly, melatonin administration ameliorated neuronal damage by inhibiting ferroptosis and ferritinophagy both in vivo and in vitro. At the molecular level, we found that not only the ferroptosis inducer p53 but also the ferritinophagy mediator NCOA4 was the potential target of miR-214-3p, which was downregulated by DM status or HG insult, but was increased after melatonin treatment. However, the inhibitory effects of melatonin on ferroptosis and ferritinophagy were blocked by miR-214-3p downregulation. These findings suggest that melatonin is a potential drug for improving diabetic brain damage by inhibiting p53-mediated ferroptosis and NCOA4-mediated ferritinophagy through regulating miR-214-3p in neurons.

15.
J Colloid Interface Sci ; 664: 596-606, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490035

RESUMO

The application of lithium metal anode (LMA) is hindered by its poor cycle life which could be caused by lithium dendrite and critical volume change during cycling. Our group previously proposed an intermittent lithiophilic model for three-dimensional (3D) composite LMA, however, the lithium electrodeposition behavior was not discussed. To verify this model, this work proposed a facile design of a petaloid bimetallic metal-organic frameworks (MOFs) derived ZnCo2O4/ZnO (ZZCO) nanosheets modified carbon cloth (CC), i.e. CC@ZZCO, as a 3D host to achieve the intermittent deposition of lithium (Li). The material characterizations, density functional theory (DFT) calculations, lithium electrodeposition behaviors, and the electrochemical tests were investigated and the intermittent lithium deposition behavior was firstly confirmed. Thanks to the intermittent lithiophilic model, the composite LMA enabled a prolonged lifespan of 1500 h in a symmetrical cell under challenging conditions of 5 mA h cm-2 and 5 mA cm-2, and can maintain stable at 10C with an ultrahigh specific capacity of 110 mAh/g. Furthermore, it can also be coupled with a LiNi0.5Co0.2Mn0.3O2 (NCM523) and a high surface load of LiFePO4 (LFP) cathode (11.5 mg cm-2). This research might open a window for the understanding of the Li deposition behavior and pave the way to develop other alkali-metal-ion batteries.

16.
Adv Mater ; 36(25): e2400342, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511521

RESUMO

Interfacial layers (ILs) are prerequisites to form the selective charge transport for high-performance organic photovoltaics (OPVs) but mostly result in considerable parasitic absorption loss. Trimming the ILs down to a mono-molecular level via the self-assembled monolayer is an effective strategy to mitigate parasitic absorption loss. However, such a strategy suffers from inferior electrical contact with low surface coverage on rough surfaces and poor producibility. To address these issues, here, the self-assembled interlayer (SAI) strategy is developed, which involves a thin layer of 2-6 nm to form a full coverage on the substrate via both covalent and van der Waals bonds by using a self-assembled molecule of 2-(9H-carbazol-9-yl) (2PACz). Via the facile spin coating without further rinsing and annealing process, it not only optimizes the electrical and optical properties of OPVs, which enables a world-record efficiency of 20.17% (19.79% certified) but also simplifies the tedious processing procedure. Moreover, the SAI strategy is especially useful in improving the absorbing selectivity for semi-transparent OPVs, which enables a record light utilization efficiency of 5.34%. This work provides an effective strategy of SAI to optimize the optical and electrical properties of OPVs for high-performance and solar window applications.

17.
Diabetes Res Clin Pract ; 209: 111605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38453058

RESUMO

BACKGROUND: The persistent presence of inflammation is a recognized pathogenic mechanisms of diabetic foot ulcers (DFUs). We aimed to investigate the expression of PLIN1 in tissues from DFU patients and assess its potential association with inflammation-induced damage. METHODS: We performed transcriptome sequencing and correlation analysis of the foot skin from patients with or without DFUs. Additionally, we examined the correlation between PLIN1 and related inflammatory indicators by analyzing PLIN1 expression in tissue and serum samples and through high-glucose stimulation of keratinocytes (HaCaT cells). RESULTS: PLIN1 is upregulated in the tissue and serum from DFU patients. Additionally, PLIN1 shows a positive correlation with leukocytes, neutrophils, monocytes, C-reactive protein, and procalcitonin in the serum, as well as IL-1ß and TNF-α in the tissues. Experiments with Cells demonstrated that reduced expression of PLIN1 leads to significantly decreased expression of iNOS, IL-1ß, IL-6, IL-18, and TNF-α. PLIN1 may mediate wound inflammatory damage through the NF-κB signaling pathway. CONCLUSION: Our findings suggest that PLIN1 mediates the inflammatory damage in DFU, offering new prospects for the treatment of DFU.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/genética , Pé Diabético/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Pele/patologia , Inflamação/metabolismo , Queratinócitos/metabolismo , Diabetes Mellitus/metabolismo , Perilipina-1/metabolismo
18.
Mol Oncol ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501452

RESUMO

Androgen-regulated DNA damage response (DDR) is one of the essential mechanisms in prostate cancer (PCa), a hormone-sensitive disease. The heterogeneous nuclear ribonucleoprotein K (hnRNPK)-homology splicing regulatory protein known as far upstream element-binding protein 2 (KHSRP) is an RNA-binding protein that can attach to AU-rich elements in the 3' untranslated region (3'-UTR) of messenger RNAs (mRNAs) to mediate mRNA decay and emerges as a critical regulator in the DDR to preserve genome integrity. Nevertheless, how KHSRP responds to androgen-regulated DDR in PCa development remains unclear. This study found that androgen can significantly induce acetylation of KHSRP, which intrinsically drives tumor growth in xenografted mice. Moreover, enhanced KHSRP acetylation upon androgen stimuli impedes KHSRP-regulated DDR gene expression, as seen by analyzing RNA sequencing (RNA-seq) and Gene Set Enrichment Analysis (GSEA) datasets. Additionally, NAD-dependent protein deacetylase sirtuin-7 (SIRT7) is a promising deacetylase of KHSRP, and androgen stimuli impairs its interaction with KHSRP to sustain the increased KHSRP acetylation level in PCa. We first report the acetylation of KHSRP induced by androgen, which interrupts the KHSRP-regulated mRNA decay of the DDR-related genes to promote the tumorigenesis of PCa. This study provides insight into KHSRP biology and potential therapeutic strategies for PCa treatment, particularly that of castration-resistant PCa.

19.
Front Pharmacol ; 15: 1284268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529186

RESUMO

Background: The hypoglycemic effects of Chinese bayberry leaves proanthocyanidins (BLPs) have been demonstrated. It is unclear, nevertheless, whether BLPs reduced postprandial blood glucose levels by regulating glucose uptake and glucose transport. Method: This study investigated the effect of BLPs (25, 50, and 100 µg/mL) on glucose uptake and glucose transport in human intestinal epithelial cells (Caco-2 cells). The uptake of 2-Deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose (2-NBDG) and disaccharidases activity in Caco-2 cells were measured. The glucose transport ability across the cell membrane was determined using the established Caco-2 monolayer model. The transcript and protein levels of key glucose transporters were analyzed using real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting, respectively. Results: The results showed that BLPs significantly decreased glucose uptake and disaccharidases activity (p < 0.05). Otherwise, BLPs treatment obviously inhibited glucose transport across the Caco-2 monolayer in both simulated-fast (5 mM glucose) and simulated-fed (25 mM glucose) conditions. It was attributed to the suppression of glucose transporter2 (GLUT2) and sodium-dependent glucose cotransporter 1 (SGLT1) by BLPs. BLPs were found to significantly downregulated the transcript level and protein expression of glucose transporters (p < 0.05). Meanwhile, the mRNA expression of phospholipase C (PLC) and protein kinase C (PKC) involved in the signaling pathway associated with glucose transport were decreased by BLPs. Conclusion: These results suggested that BLPs inhibited intestinal glucose transport via inhibiting the expression of glucose transporters. It indicated that BLPs could be potentially used as a functional food in the diet to modulate postprandial hyperglycemia.

20.
J Phys Chem Lett ; 15(12): 3258-3266, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38488769

RESUMO

The active component of copper-based materials for electrocatalytic nitrate reduction to ammonia (NRA) remains unclear due to the susceptibility of oxidation of copper. Using density functional theory calculations, NRA pathways are evaluated on low-index crystal surfaces Cu2O (111), CuO (111), and Cu (111) at different pH. Cu2O (111), with abundant undercoordinated Cu atoms on the surface, shows easier adsorption of NO3- than Cu (111) or CuO (111). NRA on CuO (111) is hindered by the large ΔG of adsorption of NO3- and hydrogenation of *NO. Thus, Cu (111) and Cu2O (111) contribute most to the NRA activity while CuO (111) is inert. Three key steps of NRA on copper-based catalysts are identified: adsorption of NO3-, *NO → *NOH/*NHO, and *NH3 desorption, as the three can be rate-determining steps depending on the local environment. Moreover, previous experimentally detected NH2OH on copper-based catalysts may come from the NRA on Cu2O (111) as the most probable pathway on Cu2O (111) is NO3- → *NO3 → *NO2 → *NO → *NHO → *NHOH → *NH2OH → *NH2 → *NH3 → *NH3(g). At high reduction potential, CuOx would be reduced into Cu, so the effective active substance for NRA in a strong reduction environment is Cu.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...