Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Synth Syst Biotechnol ; 9(4): 842-852, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39149535

RESUMO

The Antarctic fungus Geomyces sp. WNF-15A can produce high-quality red pigments (AGRP) with good prospects for the use in food and cosmetic area. However, efficient AGRP synthesis relies on low-temperature and thus limits its industrial development. Here genome sequencing and comparative analysis were performed on the wild-type versus to four mutants derived from natural mutagenesis and transposon insertion mutation. Eleven mutated genes were identified from 2309 SNPs and 256 Indels. A CRISPR-Cas9 gene-editing system was established for functional analysis of these genes. Deficiency of scaffold1.t692 and scaffold2.t704 with unknown functions highly improved AGRP synthesis at all tested temperatures. Of note, the two mutants produced comparable levels of AGRP at 20 °C to the wild-type at 14 °C. They also broke the normal-temperature limitation and effectively synthesized AGRP at 25 °C. Comparative metabolomic analysis revealed that deficiency of scaffold1.t692 improved AGRP synthesis by regulation of global metabolic pathways especially downregulation of the competitive pathways. Knockout of key genes responsible for the differential metabolites confirmed the metabolomic results. This study shows new clues for cold-adaptive regulatory mechanism of polar fungi. It also provides references for exploitation and utilization of psychrotrophic fungal resources.

2.
Environ Res ; 262(Pt 1): 119788, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159777

RESUMO

Research on the microbiome and resistome in polar environments, such as the Arctic, is crucial for understanding the emergence and spread of antibiotic resistance genes (ARGs) in the environment. In this study, soil and reindeer faeces samples collected from Ny-Ålesund (Svalbard, High Arctic) were examined to analyze the microbiome, ARGs, and biocide/metal resistance genes (BMRGs). The dominant phyla in both soil and faeces were Pseudomonadota, Actinomycetota, and Bacteroidota. A total of 2618 predicted Open Reading Frames (ORFs) containing antibiotic resistance genes (ARGs) were detected. These ARGs belong to 162 different genes across 17 antibiotic classes, with rifamycin and multidrug resistance genes being the most prevalent. We focused on investigating antibiotic resistance mechanisms in the Ny-Ålesund environment by analyzing the resistance genes and their biological pathways. Procrustes analysis demonstrated a significant correlation between bacterial communities and ARG/BMRG profiles in soil and faeces samples. Correlation analysis revealed that Pseudomonadota contributed most to multidrug and triclosan resistance, while Actinomycetota were predominant contributors to rifamycin and aminoglycoside resistance. The geochemical factors, SiO42- and NH4+, were found to significantly influence the microbial composition and ARG distribution in the soil samples. Analysis of ARGs, BMRGs, virulence factors (VFs), and pathogens identified potential health risks associated with certain bacteria, such as Cryobacterium and Pseudomonas, due to the presence of different genetic elements. This study provided valuable insights into the molecular mechanisms and geochemical factors contributing to antibiotic resistance and enhanced our understanding of the evolution of antibiotic resistance genes in the environment.

3.
Biology (Basel) ; 12(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37508452

RESUMO

Two typical lakes formed from meltwater in the Ny-Ålesund area were taken as the study subjects in 2018. To investigate the archaeal community compositions of the two lakes, 16S rRNA genes from soil samples from the intertidal and subtidal zones of the two lakes were sequenced with high throughput. At the phylum level, the intertidal zone was dominated by Crenarchaeota and the subtidal zone was dominated by Halobacter; at the genus level, the intertidal zone was dominated by Nitrososphaeraceae_unclassified and Candidatus_Nitrocosmicus, while the subtidal zone was dominated by Methanoregula. The soil physicochemical factors pH, moisture content (MC), total organic carbon (TOC), total organic nitrogen (TON), nitrite nitrogen (NO2--N), and nitrate nitrogen (NO3--N) were significantly different in the intertidal and subtidal zones of the lake. By redundancy analysis, the results indicated that NH4+-N, SiO32--Si, MC, NO3--N, and NO2--N have had highly significant effects on the archaeal diversity and distribution. A weighted gene co-expression network analysis (WGCNA) was used to search for hub archaea associated with physicochemical factors. The results suggested that these physicochemical factors play important roles in the diversity and structure of the archaeal community at different sites by altering the abundance of certain hub archaea. In addition, Woesearchaeales was found to be the hub archaea genus at every site.

5.
Biology (Basel) ; 11(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36552364

RESUMO

It is believed that polar regions are influenced by global warming more significantly, and because polar regions are less affected by human activities, they have certain reference values for future predictions. This study aimed to investigate the effects of climate warming on soil microbial communities in lake areas, taking Kitezh Lake, Antarctica as the research area. Below-peak soil, intertidal soil, and sediment were taken at the sampling sites, and we hypothesized that the diversity and composition of the bacterial and archaeal communities were different among the three sampling sites. Through 16S rDNA sequencing and analysis, bacteria and archaea with high abundance were obtained. Based on canonical correspondence analysis and redundancy analysis, pH and phosphate had a great influence on the bacterial community whereas pH and nitrite had a great influence on the archaeal community. Weighted gene coexpression network analysis was used to find the hub bacteria and archaea related to geochemical factors. The results showed that in addition to pH, phosphate, and nitrite, moisture content, ammonium, nitrate, and total carbon content also play important roles in microbial diversity and structure at different sites by changing the abundance of some key microbiota.

6.
Microorganisms ; 10(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36296189

RESUMO

Global climate change has caused the changes of the ecological environment in the Arctic region, including sea ice melting, runoff increase, glacial lake expansion, and a typical meltwater area has formed in the Arctic coastal area. In this study, the meltwater areas near six different characteristic areas of Ny-Ålesund in 2018 were taken as the research objects, and high-throughput sequencing of V3-V4 regions of all samples were performed using 16S rDNA. Among the soil samples of six glacial meltwater areas in Ny-Ålesund, Arctic, the meltwater area near the reservoir bay had the highest bacterial abundance, and the meltwater area near the sand had the lowest one. The dominant phyla in soil samples were Proteobacteria, Actinobacteria, Acidobacteria. The NH4+-N content in intertidal soil was higher than that in subtidal soil. Through WGCNA analysis and LEFSE analysis, it was found that the core bacteria significantly related to NH4+-N were basically distributed in the intertidal area. For example, Nitrosomonadaceae, Nitrospira and Sphingomonas were the core bacteria showed significant different abundance in the intertidal area, which have the ability to metabolize NH4+-N. Our findings suggest that NH4+-N plays an important role in soil bacterial community structure in the Arctic meltwater areas.

7.
Chemosphere ; 303(Pt 2): 135092, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35636608

RESUMO

In this paper, the characteristics of persistent toxic substances (PTSs) in soil of Ny-Ålesund in the Arctic during the 10th Chinese Arctic (Arctic Ocean) scientific investigation were quantitatively analyzed. The sources and toxicity risks of polycyclic aromatic hydrocarbons (PAHs) in the soil was also analyzed. No obvious spatial distribution of PAHs was identified in the study area. LMW-PAHs are the main PAHs in this region, mainly tricyclic PAHs. The results of characteristic ratio method and PCA showed that the PAHs in soil mainly came from petroleum source and petroleum combustion source, and incomplete combustion of coal and wood, and atmospheric transport contributed to some extent. Ecological risk assessment results showed that the PAHs in soil did not bring toxicity risk, and the possibility of ecological risk was very low in Ny-Ålesund in the Arctic.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , China , Carvão Mineral/análise , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Solo/química , Poluentes do Solo/análise
8.
Sci Total Environ ; 809: 151937, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34838907

RESUMO

Kongsfjorden in the high Arctic, a typical Arctic fjord, experienced long-time input of nutrients and pollutants from the remote and local resources, providing a platform for characterizing the diversity and distribution of antibiotic resistance genes (ARGs). However, the microbiome and antibiotic resistome in this pristine marine system have not been well documented. The present study aimed to characterize the diversity and distribution of bacterial communities and associated ARGs in seawater (12 samples) and sediments (13 samples) of Kongsfjorden via metagenomic analysis. In terms of both bacterial community compositions and ARG profiles, the seawater was significantly distinct from sediment. Only 29 ARG subtypes were detected in the Arctic seawater and sediments. Furthermore, three geochemical factors (i.e., longitude, depth, and PO43-) greatly influenced the bacterial communities in sediment samples, while longitude, depth, and latitude were crucial geochemical factors influencing the ARG profiles in sediment samples. Procrustes analysis revealed a significant correlation between bacterial community compositions and ARG profiles in seawater and sediment samples. Further analysis revealed the metagenome-assembled genomes (MAGs) with ARG subtypes. Overall, our study provides insights into the microbiome and resistome in a pristine Arctic fjord, thereby providing vital information for environmental management.


Assuntos
Metagenoma , Microbiota , Antibacterianos , Genes Bacterianos , Metagenômica , Microbiota/genética , Água do Mar , Svalbard
9.
Bioresour Bioprocess ; 9(1): 118, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-38647871

RESUMO

The polar psychrotrophic fungus Geomyces sp. WNF-15A can produce high-quality natural red pigment for the potential use as edible pigment. However, it shows low-temperature-dependent synthesis of red pigment, which limits its large-scale industrial applications due to the difficult and high-cost bioprocess control. This study aims to develop transposon-mediated mutagenesis methods to generate mutants that are able to synthesize red pigment at normal temperature. Four transposable systems, including single and dual transposable systems, were established in this fungus based on the Minos from Drosophila hydei and the Restless from Tolypocladium inflatum. A total of 23 production-dominant mutants and 12 growth-dominant mutants were thus obtained by constructed transposable systems. At 14 °C and 20 °C, the MPS1 mutant strain achieved the highest level of red pigment (OD520 of 43.3 and 29.7, respectively), which was increased by 78.4% and 128.7% compared to the wild-type, respectively. Of note, 4 mutants (MPS1, MPS3, MPS4 and MPD1) successfully synthesized red pigment (OD520 of 5.0, 5.3, 4.7 and 4.9, respectively) at 25 °C, which broke the limit of the wild-type production under normal temperature. Generally, the dual transposable systems of Minos and Restless were more efficient than their single transposable systems for mutagenesis in this fungus. However, the positive mutation ratios were similar between the dual and single transposable systems for either Minos or Restless. This study provides alternative tools for genetic mutagenesis breeding of fungi from extreme environments.

10.
Microb Ecol ; 82(1): 224-232, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34081147

RESUMO

The Antarctic and Arctic regions are collectively referred to as the "Two Poles" of the earth and have extremely harsh climate conditions and fragile ecosystems. Until now, the biogeography of the fungal communities in the bipolar regions is not well known. In this study, we focused on the fungal communities in 110 samples collected from four habitat types (i.e., soil, vascular plant, freshwater, moss) in the Antarctic and Arctic sites using high-throughput sequencing. The data showed that the diversity and composition of fungal communities were both geographically patterned and habitat-patterned. ANOSIM tests revealed statistically significant differences among fungal communities in the eight sample types (R = 0.5035, p < 0.001) and those in the bipolar regions (R = 0.32859, p < 0.001). Only 396 OTUs (14.8%) were shared between the bipolar sites. Fungal communities in the four habitat types clustered together in the Arctic site but were separate from those of the Antarctic site, indicating that geographic distance was a more important determinant of fungal communities in the bipolar sites. These findings offer insights into the present-day biogeography of fungal communities in the bipolar sites.


Assuntos
Micobioma , Regiões Antárticas , Regiões Árticas , Ecossistema , Microbiologia do Solo
11.
Extremophiles ; 24(6): 821-829, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32974723

RESUMO

Fungi are widely distributed in all terrestrial ecosystems, and they are essential to the recycling of nutrients in all terrestrial habitats on earth. We wanted to determine the relationship between soil fungal communities and geochemical factors (geographical location and soil physicochemical properties) in three widely separated geographical regions (the Antarctic, Arctic, and Tibet Plateau). Using high-throughput Illumina amplicon sequencing, we characterized the fungal communities in 53 soil samples collected from the three regions. The fungal richness and diversity indices were not significantly different among the three regions. However, fungal community composition and many fungal taxa (Thelebolales, Verrucariales, Sordariales, Chaetothyriales, Hypocreales, Pleosporales, Capnodiales, and Dothideales) significantly differed among three regions. Furthermore, geographical location (latitude and altitude) and six soil physicochemical properties (SiO42--Si, pH, NO3--N, organic nitrogen, NO2--N, and organic carbon) were significant geochemical factors those were correlated with the soil fungal community composition. These results suggest that many geochemical factors influence the distribution of the fungal species within the Antarctic, Arctic, and Tibet Plateau.


Assuntos
Fungos/classificação , Micobioma , Microbiologia do Solo , Regiões Antárticas , Regiões Árticas , Ecossistema , Tibet
12.
J Food Sci ; 85(10): 3061-3071, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32895956

RESUMO

Natural red pigments have been widely used as food and cosmetics additives. However, due to toxic byproducts or allergen issues, it is still necessary to look for some other red pigment products. This study proposed combinatorial strategies to improve production of a new kind of red pigments from the fungus Geomyces WNF-15A, isolated from Antarctica. A high-production medium was developed by statistical experimental design, which was further simplified for industrial use by single-factor experiments. Strain breeding by atmospheric room temperature plasma mutagenesis generated a mutant, Geomyces sp. WNF-15A-M210, which increased production of red pigments by 24.4% and shortened culture phase by 33.3% comparing with the wild-type. The production of red pigments by this mutant favored a weak alkaline condition but required only mild dissolved oxygen tension. Control of initial pH 8.5 (process pH around 7.5) increased red pigments production by 19% comparing with natural condition. Precursor and inhibitor addition experiments indicated that the red pigments were synthesized by polyketide pathway, and feeding 6 mmol/L precursor of sodium acetate by three aliquots at days 3 to 5 improved biosynthesis of red pigments by 27%. Finally, the developed culture process was verified in a 5-L stirred tank bioreactor. The red pigments production of the pH regulation group reached 1.11-fold of the control and 1.95-fold of the precursor regulation group, respectively. This study provides high-production strain, optimized medium, and bioprocess for the possible industrial production of Antarctic Geomyces red pigments in future. PRACTICAL APPLICATION: Antarctic Geomyces red pigments showed high color value, nontoxic characteristic, and good water solubility. It holds potential for industrial use and is under development for food additive in China currently. This study provides an optional manufacturing process for this new kind of red pigments.


Assuntos
Ascomicetos/metabolismo , Microbiologia Industrial/métodos , Pigmentos Biológicos/metabolismo , Regiões Antárticas , Ascomicetos/química , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , China , Cor , Meios de Cultura/química , Meios de Cultura/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Pigmentos Biológicos/análise
13.
Microorganisms ; 7(11)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717448

RESUMO

The function of Arctic soil ecosystems is crucially important for the global climate, and nitrogen (N) is the major limiting nutrient in these environments. This study assessed the effects of changes in nitrogen content on archaeal community diversity and composition in the Arctic lake area (London Island, Svalbard). A total of 16S rRNA genes were sequenced to investigate archaeal community composition. First, the soil samples and sediment samples were significantly different for the geochemical properties and archaeal community composition. Thaumarchaeota was an abundant phylum in the nine soil samples. Moreover, Euryarchaeota, Woesearchaeota, and Bathyarchaeota were significantly abundant phyla in the three sediment samples. Second, it was found that the surface runoff caused by the thawing of frozen soil and snow changed the geochemical properties of soils. Then, changes in geochemical properties affected the archaeal community composition in the soils. Moreover, a distance-based redundancy analysis revealed that NH4+-N (p < 0.05) and water content were the most significant factors that correlated with the archaeal community composition. Our study suggests that nitrogen content plays an important role in soil archaeal communities. Moreover, archaea play an important role in the carbon and nitrogen cycle in the Arctic lake area.

14.
Microbes Environ ; 34(2): 180-190, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31178526

RESUMO

Lakes of meltwater in the Artic have become one of the transforming landscape changes under global warming. We herein compared microbial communities between sediments and bank soils at an arctic lake post land submergence using geochemistry, 16S rRNA amplicons, and metagenomes. The results obtained showed that each sample had approximately 2,609 OTUs on average and shared 1,716 OTUs based on the 16S rRNA gene V3-V4 region. Dominant phyla in sediments and soils included Proteobacteria, Acidobacteria, Actinobacteria, Gemmatimonadetes, and Nitrospirae; sediments contained a unique phylum, Euryarchaeota, with the phylum Thaumarchaeota being primarily present in bank soils. Among the top 35 genera across all sites, 17 were more abundant in sediments, while the remaining 18 were more abundant in bank soils; seven out of the top ten genera across all sites were only from sediments. A redundancy analysis separated sediment samples from soil samples based on the components of nitrite and ammonium. Metagenome results supported the role of nitrite because most of the genes for denitrification and methane metabolic genes were more abundant in sediments than in soils, while the abundance of phosphorus-utilizing genes was similar and, thus, was not a significant explanatory factor. We identified several modules from the global networks of OTUs that were closely related to some geochemical factors, such as pH and nitrite. Collectively, the present results showing consistent changes in geochemistry, microbiome compositions, and functional genes suggest an ecological mechanism across molecular and community levels that structures microbiomes post land submergence.


Assuntos
Sedimentos Geológicos/microbiologia , Metagenômica , Microbiota , Microbiologia do Solo , Archaea/classificação , Archaea/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Regiões Árticas , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodiversidade , Sedimentos Geológicos/química , Lagos , Metano/metabolismo , Microbiota/genética , Nitrogênio/metabolismo , RNA Ribossômico 16S/genética , Solo/química
15.
Antonie Van Leeuwenhoek ; 112(8): 1121-1136, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30783849

RESUMO

The Arctic region has been the focus of increasing attention as an ecosystem that is highly sensitive to changes associated with global warming. Although it was assumed to be vulnerable to changes in climate, a limited number of studies have been conducted on the surface sediment bacteria of Arctic fjorden. This study assessed the diversity and distribution pattern of bacterial communities in eight marine sediments along the seafloor in a high Arctic fjorden (Kongsfjorden, Svalbard). A total of 822 operational taxonomic units (OTUs) were identified by Illumina MiSeq sequencing, targeting the V3-V4 hypervariable regions of the 16S rRNA gene. In these surface marine sediments, more than half of the sequences belonged to the phylum Proteobacteria, followed by Bacteroidetes, Verrucomicrobia, Actinobacteria, Chloroflexi and Lentisphaerae. The bacterial genera Marinicella, Desulfobulbus, Lutimonas, Sulfurovum and clade SEEP-SRB4 were dominant in all samples. Analysis of similarity indicated that bacterial communities were significantly different among the inner, central and outer basins (r2 = 0.5, P = 0.03 < 0.05). Canonical correspondence analysis and permutation tests revealed that location depth (r2 = 0.87, P < 0.01), temperature (r2 = 0.88, P < 0.01) and salinity (r2 = 0.88, P < 0.05) were the most significant factors that correlated with the bacterial communities in the sediments. 28 differentially abundant taxonomic clades in the inner and outer basin with an LDA score higher than 2.0 were found by the LEfSe method. The Spearman correlation heat map revealed different degrees of correlation between most major OTUs and environmental factors, while some clades have an inverse correlation with environmental factors. The spatial patterns of bacterial communities along the Kongsfjorden may offer insight into the ecological responses of prokaryotes to climate change in the Arctic ecosystem, which makes it necessary to continue with monitoring.


Assuntos
Bactérias/classificação , Bactérias/genética , Biota , Sedimentos Geológicos/microbiologia , Regiões Árticas , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Geografia , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Água do Mar/química , Análise de Sequência de DNA , Svalbard , Temperatura
16.
Plant Biotechnol J ; 17(4): 836-845, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30267599

RESUMO

Ferulate 5-hydroxylase (F5H) catalyses the hydroxylation of coniferyl alcohol and coniferaldehyde for the biosynthesis of syringyl (S) lignin in angiosperms. However, the coordinated effects of F5H with caffeic acid O-methyltransferase (COMT) on the metabolic flux towards S units are largely unknown. We concomitantly regulated F5H expression in COMT-down-regulated transgenic switchgrass (Panicum virgatum L.) lines and studied the coordination of F5H and COMT in lignin biosynthesis. Down-regulation of F5H in COMT-RNAi transgenic switchgrass plants further impeded S lignin biosynthesis and, consequently, increased guaiacyl (G) units and reduced 5-OH G units. Conversely, overexpression of F5H in COMT-RNAi transgenic plants reduced G units and increased 5-OH units, whereas the deficiency of S lignin biosynthesis was partially compensated or fully restored, depending on the extent of COMT down-regulation in switchgrass. Moreover, simultaneous regulation of F5H and COMT expression had different effects on cell wall digestibility of switchgrass without biomass loss. Our results indicate that up-regulation and down-regulation of F5H expression, respectively, have antagonistic and synergistic effects on the reduction in S lignin resulting from COMT suppression. The coordinated effects between lignin genes should be taken into account in future studies aimed at cell wall bioengineering.


Assuntos
Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Metiltransferases/metabolismo , Panicum/enzimologia , Biomassa , Parede Celular/metabolismo , Regulação para Baixo , Metiltransferases/genética , Panicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA
17.
Front Microbiol ; 9: 552, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29666609

RESUMO

Expansion of penguin activity in maritime Antarctica, under ice thaw, increases the chances of penguin feces affecting soil microbiomes. The detail of such effects begins to be revealed. By comparing soil geochemistry and microbiome composition inside (one site) and outside (three sites) of the rookery, we found significant effects of penguin feces on both. First, penguin feces change soil geochemistry, causing increased moisture content (MC) of ornithogenic soils and nutrients C, N, P, and Si in the rookery compared to non-rookery sites, but not pH. Second, penguin feces directly affect microbiome composition in the rookery, not those outside. Specifically, we found 4,364 operational taxonomical units (OTUs) in 404 genera in six main phyla: Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria, Chloroflexi, and Bacteroidetes. Although the diversity is similar among the four sites, the composition is different. For example, penguin rookery has a lower abundance of Acidobacteria, Chloroflexi, and Nitrospirae but a higher abundance of Bacteroidetes, Firmicutes, and Thermomicrobia. Strikingly, the family Clostridiaceae of Firmicutes of penguin-feces origin is most abundant in the rookery than non-rookery sites with two most abundant genera, Tissierella and Proteiniclasticum. Redundancy analysis showed all measured geochemical factors are significant in structuring microbiomes, with MC showing the highest correlation. We further extracted 21 subnetworks of microbes which contain 4,318 of the 4,364 OTUs using network analysis and are closely correlated with all geochemical factors except pH. Our finding f penguin feces, directly and indirectly, affects soil microbiome suggests an important role of penguins in soil geochemistry and microbiome structure of maritime Antarctica.

18.
BMC Microbiol ; 17(1): 129, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558650

RESUMO

BACKGROUND: With the growing demand for fossil fuels and the severe energy crisis, lignocellulose is widely regarded as a promising cost-effective renewable resource for ethanol production, and the use of lignocellulose residues as raw material is remarkable. Polar organisms have important value in scientific research and development for their novelty, uniqueness and diversity. RESULTS: In this study, a fungus Aspergillus sydowii MS-19, with the potential for lignocellulose degradation was screened out and isolated from an Antarctic region. The growth profile of Aspergillus sydowii MS-19 was measured, revealing that Aspergillus sydowii MS-19 could utilize lignin as a sole carbon source. Its ability to synthesize low-temperature lignin peroxidase (Lip) and manganese peroxidase (Mnp) enzymes was verified, and the properties of these enzymes were also investigated. High-throughput sequencing was employed to identify and characterize the transcriptome of Aspergillus sydowii MS-19. Carbohydrate-Active Enzymes (CAZyme)-annotated genes in Aspergillus sydowii MS-19 were compared with those in the brown-rot fungus representative species, Postia placenta and Penicillium decumbens. There were 701CAZymes annotated in Aspergillus sydowii MS-19, including 17 cellulases and 19 feruloyl esterases related to lignocellulose-degradation. Remarkably, one sequence annotated as laccase was obtained, which can degrade lignin. Three peroxidase sequences sharing a similar structure with typical lignin peroxidase and manganese peroxidase were also found and annotated as haem-binding peroxidase, glutathione peroxidase and catalase-peroxidase. CONCLUSIONS: In this study, the fungus Aspergillus sydowii MS-19 was isolated and shown to synthesize low-temperature lignin-degrading enzymes: lignin peroxidase (Lip) and manganese peroxidase (Mnp). These findings provide useful information to improve our understanding of low-temperature lignocellulosic enzyme production by polar microorganisms and to facilitate research and applications of the novel Antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source.


Assuntos
Aspergillus/crescimento & desenvolvimento , Aspergillus/isolamento & purificação , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica/métodos , Regiões Antárticas , Aspergillus/classificação , Aspergillus/genética , Temperatura Baixa , Proteínas Fúngicas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Lacase/genética , Lacase/metabolismo , Lignina/biossíntese , Lignina/metabolismo , Anotação de Sequência Molecular , Peroxidases/genética , Peroxidases/metabolismo
19.
Fish Shellfish Immunol ; 60: 426-435, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27744058

RESUMO

Potassium ion channels are one of the most diversely and widely distributed channels, which are involved in all kinds of physiological functions in both excitable and non-excitable cells. The expression of voltage-gated potassium ion (Kv) channels is highly variable according to the state of macrophages activation. Macrophages have an important function in innate immunity against intruding pathogens. They produce a variety of inflammatory and immunoactive molecules that modulate imflammatory responses. Here we show that blockade of K+ channels by non-selective Kv channel inhibitor tetraethylammonium chloride (TEA), and 4-aminopyridine (4-AP) inhibited proinflammatory cytokines expression, cell proliferation, and reactive oxygen species (ROS) production in LPS-stimulated macrophages of Sea perch (Lateolabrax japonicas). Then we isolated four Kv channels genes (spKv1.1, spKv1.2, spKv1.5 and spKv3.1) in LPS-activated fish macrophages. These channels genes were up-regulated after LPS stimulation except spKv3.1, which remained unchanged during the test. The results of this study indicate that Kv channels could be required for modulating the immune function of fish macrophages.


Assuntos
Citocinas/genética , Proteínas de Peixes/genética , Ativação de Macrófagos/efeitos dos fármacos , Perciformes/genética , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Espécies Reativas de Oxigênio/metabolismo , 4-Aminopiridina/farmacologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Citocinas/imunologia , Citocinas/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Lipopolissacarídeos/farmacologia , Perciformes/imunologia , Perciformes/metabolismo , Filogenia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Alinhamento de Sequência/veterinária , Tetraetilamônio/farmacologia
20.
Front Microbiol ; 7: 227, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26955371

RESUMO

This study assessed the fungal community composition and its relationships with properties of surface soils in the Ny-Ålesund Region (Svalbard, High Arctic). A total of thirteen soil samples were collected and soil fungal community was analyzed by 454 pyrosequencing with fungi-specific primers targeting the rDNA internal transcribed spacer (ITS) region. The following eight soil properties were analyzed: pH, organic carbon (C), organic nitrogen (N), ammonium nitrogen (NH4 (+)-N), silicate silicon (SiO4 (2-)-Si), nitrite nitrogen (NO2 (-)-N), phosphate phosphorus (PO4 (3-)-P), and nitrate nitrogen (NO3 (-)-N). A total of 57,952 reads belonging to 541 operational taxonomic units (OTUs) were found. of these OTUs, 343 belonged to Ascomycota, 100 to Basidiomycota, 31 to Chytridiomycota, 22 to Glomeromycota, 11 to Zygomycota, 10 to Rozellomycota, whereas 24 belonged to unknown fungi. The dominant orders were Helotiales, Verrucariales, Agaricales, Lecanorales, Chaetothyriales, Lecideales, and Capnodiales. The common genera (>eight soil samples) were Tetracladium, Mortierella, Fusarium, Cortinarius, and Atla. Distance-based redundancy analysis (db-rda) and analysis of similarities (ANOSIM) revealed that soil pH (p = 0.001) was the most significant factor in determining the soil fungal community composition. Members of Verrucariales were found to predominate in soils of pH 8-9, whereas Sordariales predominated in soils of pH 7-8 and Coniochaetales predominated in soils of pH 6-7. The results suggest the presence and distribution of diverse soil fungal communities in the High Arctic, which can provide reliable data for studying the ecological responses of soil fungal communities to climate changes in the Arctic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...