Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37836201

RESUMO

(1) Background: Cytoplasmic male sterility (CMS) is important for exploiting heterosis. Soybean (Glycine max L.) has a low outcrossing rate that is detrimental for breeding sterile lines and producing hybrid seeds. Therefore, the molecular mechanism controlling the outcrossing rate should be elucidated to increase the outcrossing rate of soybean CMS lines; (2) Methods: The male-sterile soybean lines JLCMS313A (with a high outcrossing rate; HL) and JLCMS226A (with a low outcrossing rate; LL) were used for a combined analysis of the transcriptome (RNA-seq) and the targeted phenol metabolome; (3) Results: The comparison between HL and LL detected 5946 differentially expressed genes (DEGs) and 81 phenolic metabolites. The analysis of the DEGs and differentially abundant phenolic metabolites identified only one common KEGG pathway related to flavonoid biosynthesis. The qRT-PCR expression for eight DEGs was almost consistent with the transcriptome data. The comparison of the cloned coding sequence (CDS) regions of the SUS, FLS, UGT, and F3H genes between HL and LL revealed seven single nucleotide polymorphisms (SNPs) only in the F3H CDS. Moreover, five significant differentially abundant phenolic metabolites between HL and LL were associated with flavonoid metabolic pathways. Finally, on the basis of the SNPs in the F3H CDS, one derived cleaved amplified polymorphic sequence (dCAPS) marker was developed to distinguish between HL and LL soybean lines; (4) Conclusions: The flavonoid biosynthesis pathway may indirectly affect the outcrossing rate of CMS sterile lines in soybean.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36429878

RESUMO

With the vigorous development of the medical industry in China, residents' health has been significantly improved. However, along with the income gap, urban-rural gap, and healthcare resource gap caused by economic development, health inequality has become a fundamental barrier to the promotion of residents' health. The popularity of the Internet has helped close the gap to some extent, but it also has drawbacks. Using data from the China Family Panel Studies (CFPS) from 2014 to 2018, we evaluated the effects of Internet usage on health disparities among residents using fixed effect models, mediation effect models, and other methodologies. The findings indicate that Internet usage can help to minimize health inequality since it lowers income inequality, promotes health consciousness, and reduces depression. Furthermore, Internet usage plays a greater role on the health improvement of the middle-aged, the elderly, urban residents, and females. Although the Internet has brought "digital dividends" in general, the Internet usage rates among different groups also reveal that there is a clear "digital gap" among rural residents, elderly groups, and low-income groups. These results have significant implications for promoting healthcare equality.


Assuntos
Disparidades nos Níveis de Saúde , Internet , Idoso , Feminino , Pessoa de Meia-Idade , Humanos , Uso da Internet , Povo Asiático , China/epidemiologia
3.
Front Genet ; 12: 654146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054917

RESUMO

Cytoplasmic male sterility (CMS) is an important plant characteristic for exploiting heterosis to enhance crop traits during breeding. However, the CMS regulatory network remains unclear in plants, even though researchers have attempted to isolate genes associated with CMS. In this study, we performed high-throughput sequencing and degradome analyses to identify microRNAs (miRNAs) and their targets in a soybean CMS line (JLCMS9A) and its maintainer line (JLCMS9B). Additionally, the differentially expressed genes during reproductive development were identified using RNA-seq data. A total of 280 miRNAs matched soybean miRNA sequences in miRBase, including mature miRNAs and pre-miRNAs. Of the 280 miRNAs, 30, 23, and 21 belonged to the miR166, miR156, and miR171 families, respectively. Moreover, 410 novel low-abundant miRNAs were identified in the JLCMS9A and JLCMS9B flower buds. Furthermore, 303 and 462 target genes unique to JLCMS9A and JLCMS9B, respectively, as well as 782 common targets were predicted based on the degradome analysis. Target genes differentially expressed between the CMS line and the maintainer line were revealed by an RNA-seq analysis. Moreover, all target genes were annotated with diverse functions related to biological processes, cellular components, and molecular functions, including transcriptional regulation, the nucleus, meristem maintenance, meristem initiation, cell differentiation, auxin-activated signaling, plant ovule development, and anther development. Finally, a network was built based on the interactions. Analyses of the miRNA, degradome, and transcriptome datasets generated in this study provided a comprehensive overview of the reproductive development of a CMS soybean line. The data presented herein represent useful information for soybean hybrid breeding. Furthermore, the study results indicate that miRNAs might contribute to the soybean CMS regulatory network by modulating the expression of CMS-related genes. These findings lay the foundation for future studies on the molecular mechanisms underlying soybean CMS.

4.
Plants (Basel) ; 9(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245080

RESUMO

Cytoplasmic male sterility (CMS) lines and their maintainer line have the same nucleus but different cytoplasm types. We used three soybean (Glycine max L.) CMS lines, JLCMS9A, JLCMSZ9A, and JLCMSPI9A, and their maintainer line, JLCMS9B, to explore whether methylation levels differed in their nuclei. Whole-genome bisulfite sequencing of these four lines was performed. The results show that the cytosine methylation level in the maintainer line was lower than in the CMS lines. Compared with JLCMS9B, the Gene Ontology (GO) enrichment analysis of DMR (differentially methylated region, DMR)-related genes of JLCMS9A revealed that their different 5-methylcytosine backgrounds were enriched in molecular function, whereas JLCMSZ9A and JLCMSPI9A were enriched in biological process and cellular component. The Kyoto Encyclopedia of Genes and Genome (KEGG) analysis of DMR-related genes and different methylated promoter regions in different cytosine contexts, hypomethylation or hypermethylation, showed that the numbers of DMR-related genes and promoter regions were clearly different. According to the DNA methylation and genetic distances separately, JLCMS9A clustered with JLCMS9B, and JLCMSPI9A with JLCMSZ9A. Thus, the effects of different cytoplasm types on DNA methylation were significantly different. This may be related to their genetic distances revealed by re-sequencing these lines. The detected DMR-related genes and pathways that are probably associated with CMS are also discussed.

5.
PLoS One ; 12(7): e0181061, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28708857

RESUMO

Heterosis has been widely exploited as an approach to enhance crop traits during breeding. However, its underlying molecular genetic mechanisms remain unclear. Recent advances in RNA sequencing technology (RNA-seq) have provided an opportunity to conduct transcriptome profiling for heterosis studies. We used RNA-seq to analyze the flower transcriptomes of two F1 hybrid soybeans (HYBSOY-1 and HYBSOY-5) and their parents. More than 385 million high-quality reads were generated and aligned against the soybean reference genome. A total of 681 and 899 genes were identified as being differentially expressed between HYBSOY-1 and HYBSOY-5 and their parents, respectively. These differentially expressed genes (DEGs) were categorized into four major expression categories with 12 expression patterns. Furthermore, gene ontology (GO) term analysis showed that the DEGs were enriched in the categories metabolic process and catalytic activity, while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis found that metabolic pathway and biosynthesis of secondary metabolites were enriched in the two F1 hybrids. Comparing the DEGs of the two F1 hybrids by GO term and KEGG pathway analyses identified 26 common DEGs that showed transgressive up-regulation, and which could be considered potential candidate genes for heterosis in soybean F1 hybrids. This identification of an extensive transcriptome dataset gives a comprehensive overview of the flower transcriptomes in two F1 hybrids, and provides useful information for soybean hybrid breeding. These findings lay the foundation for future studies on molecular mechanisms underlying soybean heterosis.


Assuntos
Genoma de Planta , Glycine max/genética , Vigor Híbrido/genética , RNA de Plantas/metabolismo , Transcriptoma , Regulação para Baixo , Flores/genética , Perfilação da Expressão Gênica , Fenótipo , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Glycine max/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...