Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39137077

RESUMO

Brain network analysis plays an increasingly important role in studying brain function and the exploring of disease mechanisms. However, existing brain network construction tools have some limitations, including dependency on empirical users, weak consistency in repeated experiments and time-consuming processes. In this work, a diffusion-based brain network pipeline, DGCL is designed for end-to-end construction of brain networks. Initially, the brain region-aware module (BRAM) precisely determines the spatial locations of brain regions by the diffusion process, avoiding subjective parameter selection. Subsequently, DGCL employs graph contrastive learning to optimize brain connections by eliminating individual differences in redundant connections unrelated to diseases, thereby enhancing the consistency of brain networks within the same group. Finally, the node-graph contrastive loss and classification loss jointly constrain the learning process of the model to obtain the reconstructed brain network, which is then used to analyze important brain connections. Validation on two datasets, ADNI and ABIDE, demonstrates that DGCL surpasses traditional methods and other deep learning models in predicting disease development stages. Significantly, the proposed model improves the efficiency and generalization of brain network construction. In summary, the proposed DGCL can be served as a universal brain network construction scheme, which can effectively identify important brain connections through generative paradigms and has the potential to provide disease interpretability support for neuroscience research.

2.
Asian J Surg ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019752
3.
Phys Chem Chem Phys ; 26(31): 20891-20897, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39044688

RESUMO

The commercial applications of lead halide perovskites are hindered by their negative environmental impact and inherent instability. Consequently, developing environmentally friendly copper-based perovskite materials is crucial for future solid-state lighting and display applications. In this study, an ultrafast high-power ultrasonic synthesis strategy was utilized to achieve uniform nucleation and growth of Cs3Cu2X5 (X = Cl, Br, I) nanocrystals (NCs) that possess remarkable luminescence properties, hydroxyl protection, and ligand-free characteristics. These Cs3Cu2X5 NCs exhibited a tunable spectral range spanning from 446 to 525 nm, accompanied by photoluminescence quantum yields (PLQYs) varying from 0.2% to 79.2%. The spectral attributes of the NCs were effectively controlled by modulating the halide type and composition. It is worth noting that density functional theory (DFT) calculations offer valuable insights into the synthesis of NCs and the selection of suitable alcohol solvents. Moreover, we successfully fabricated an efficient and stable white light-emitting diode (WLED) with a high luminous efficiency of 23 lm W-1 and CIE color coordinates of (0.3266, 0.3487). Our work provides a new strategy to synthesize Cs3Cu2X5 NCs and holds promise for their potential application in display and lighting devices.

4.
Med Image Anal ; 97: 103213, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38850625

RESUMO

Multi-modal data can provide complementary information of Alzheimer's disease (AD) and its development from different perspectives. Such information is closely related to the diagnosis, prevention, and treatment of AD, and hence it is necessary and critical to study AD through multi-modal data. Existing learning methods, however, usually ignore the influence of feature heterogeneity and directly fuse features in the last stages. Furthermore, most of these methods only focus on local fusion features or global fusion features, neglecting the complementariness of features at different levels and thus not sufficiently leveraging information embedded in multi-modal data. To overcome these shortcomings, we propose a novel framework for AD diagnosis that fuses gene, imaging, protein, and clinical data. Our framework learns feature representations under the same feature space for different modalities through a feature induction learning (FIL) module, thereby alleviating the impact of feature heterogeneity. Furthermore, in our framework, local and global salient multi-modal feature interaction information at different levels is extracted through a novel dual multilevel graph neural network (DMGNN). We extensively validate the proposed method on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and experimental results demonstrate our method consistently outperforms other state-of-the-art multi-modal fusion methods. The code is publicly available on the GitHub website. (https://github.com/xiankantingqianxue/MIA-code.git).

6.
IEEE Trans Med Imaging ; PP2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607706

RESUMO

Multimodal neuroimaging provides complementary information critical for accurate early diagnosis of Alzheimer's disease (AD). However, the inherent variability between multimodal neuroimages hinders the effective fusion of multimodal features. Moreover, achieving reliable and interpretable diagnoses in the field of multimodal fusion remains challenging. To address them, we propose a novel multimodal diagnosis network based on multi-fusion and disease-induced learning (MDL-Net) to enhance early AD diagnosis by efficiently fusing multimodal data. Specifically, MDL-Net proposes a multi-fusion joint learning (MJL) module, which effectively fuses multimodal features and enhances the feature representation from global, local, and latent learning perspectives. MJL consists of three modules, global-aware learning (GAL), local-aware learning (LAL), and outer latent-space learning (LSL) modules. GAL via a self-adaptive Transformer (SAT) learns the global relationships among the modalities. LAL constructs local-aware convolution to learn the local associations. LSL module introduces latent information through outer product operation to further enhance feature representation. MDL-Net integrates the disease-induced region-aware learning (DRL) module via gradient weight to enhance interpretability, which iteratively learns weight matrices to identify AD-related brain regions. We conduct the extensive experiments on public datasets and the results confirm the superiority of our proposed method. Our code will be available at: https://github.com/qzf0320/MDL-Net.

7.
Toxicol Res (Camb) ; 13(2): tfae064, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38680951

RESUMO

Background: Postmenopausal osteoporosis (PMPO) is the most familiar type of osteoporosis, a silent bone disease. Casticin, a natural flavonoid constituent, improves osteoporosis in animal model. Nevertheless, the potential mechanism remains to be further explored. Methods: A model of PMPO was established in rats treated with ovariectomy (OVX) and RAW 264.7 cells induced with receptor activator of nuclear factor kappa-B ligand (RANKL). The effect and potential mechanism of casticin on PMPO were addressed by pathological staining, measurement of bone mineral density (BMD), three-point bending test, serum biochemical detection, filamentous-actin (F-actin) ring staining, TRAcP staining, reverse transcription quantitative polymerase chain reaction, western blot and examination of oxidative stress indicators. Results: The casticin treatment increased the femoral trabecular area, bone maturity, BMD, elastic modulus, maximum load, the level of calcium and estrogen with the reduced concentrations of alkaline phosphatase (ALP) and tumor necrosis factor (TNF)-α in OVX rats. An enhancement in the F-actin ring formation, TRAcP staining and the relative mRNA expression of NFATc1 and TRAP was observed in RANKL-induced RAW 264.7 cells, which was declined by the treatment of casticin. Moreover, the casticin treatment reversed the reduced the relative protein expression of Nrf2 and HO-1 and the concentrations of superoxide dismutase and glutathione peroxidase, and the increased content of malondialdehyde both in vivo and in vitro. Conclusion: Casticin improved bone density, bone biomechanics, the level of calcium and estrogen, the release of pro-inflammatory factor and oxidative stress to alleviate osteoporosis, which was associated with the upregulation of Nrf2/HO-1 pathway.

8.
IEEE Trans Cybern ; 54(9): 5026-5039, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38324437

RESUMO

The study of nicotine addiction mechanism is of great significance in both nicotine withdrawal and brain science. The detection of addiction-related brain connectivity using functional magnetic resonance imaging (fMRI) is a critical step in study of this mechanism. However, it is challenging to accurately estimate addiction-related brain connectivity due to the low-signal-to-noise ratio of fMRI and the issue of small sample size. In this work, a prior-embedding graph generative adversarial network (PG-GAN) is proposed to capture addiction-related brain connectivity accurately. By designing a dual-generator-based scheme, the addiction-related connectivity generator is employed to learn the feature map of addiction connection, while the reconstruction generator is used for sample reconstruction. Moreover, a bidirectional mapping mechanism is designed to maintain the consistency of sample distribution in the latent space so that addiction-related brain connectivity can be estimated more accurately. The proposed model utilizes prior knowledge embeddings to reduce the search space so that the model can better understand the latent distribution for the issue of small sample size. Experimental results demonstrate the effectiveness of the proposed PG-GAN.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Redes Neurais de Computação , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Tabagismo/diagnóstico por imagem , Tabagismo/fisiopatologia , Adulto
10.
J Colloid Interface Sci ; 660: 1058-1070, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310054

RESUMO

Fine-tuning the surface structure of transition metal oxides at the atomic level is a promising way to improve the catalytic properties of materials. However, the influence of crystal surface structure on electrode reaction kinetics is still limited. In this study, we propose an in-situ synthesis strategy to obtain two-dimensional carbon/cerium oxide core-shell nanosheets by thermal decomposition of Ce-MOF nanosheets grown on the surface of carbon nanostructures, and fine-tuning the surface structure by introducing oxygen vacancies through defect engineering during the oxide nucleation process is conducted to obtain controllable exposed {111} and {110} surface CeO2@C composites. Both experiments and theoretical calculations show that the {110} -dominated nanocomplex (CeO2@C-350S) has better kinetic behavior and catalytic activity due to its abundant surface defects, which is manifested in higher active surface area, richer carrier concentration, and better promotion of diffusion and adsorption. In addition, CeO2@C-350S electrode has an extremely wide linear range and good stability in the electrochemical detection of nitrite. After 1000 times of the accelerated cycle experiments, CeO2@C-350S electrode still maintains 79.3 % of its initial current response, and recovers to 87.3 % after 10 min of stopping the test. The electrode stability is excellent, which is attributed to the clever carbon shell structure of the material. This synthesis strategy can be extended to other carbon-based oxide composite catalysts to improve the electrocatalytic performance and overall stability by adjusting the surface structure.

11.
Brain Inform ; 11(1): 1, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38190053

RESUMO

Functional magnetic resonance imaging (fMRI) provides insights into complex patterns of brain functional changes, making it a valuable tool for exploring addiction-related brain connectivity. However, effectively extracting addiction-related brain connectivity from fMRI data remains challenging due to the intricate and non-linear nature of brain connections. Therefore, this paper proposed the Graph Diffusion Reconstruction Network (GDRN), a novel framework designed to capture addiction-related brain connectivity from fMRI data acquired from addicted rats. The proposed GDRN incorporates a diffusion reconstruction module that effectively maintains the unity of data distribution by reconstructing the training samples, thereby enhancing the model's ability to reconstruct nicotine addiction-related brain networks. Experimental evaluations conducted on a nicotine addiction rat dataset demonstrate that the proposed GDRN effectively explores nicotine addiction-related brain connectivity. The findings suggest that the GDRN holds promise for uncovering and understanding the complex neural mechanisms underlying addiction using fMRI data.

12.
IEEE Trans Cybern ; 54(6): 3652-3665, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38236677

RESUMO

Alzheimer's disease (AD) is characterized by alterations of the brain's structural and functional connectivity during its progressive degenerative processes. Existing auxiliary diagnostic methods have accomplished the classification task, but few of them can accurately evaluate the changing characteristics of brain connectivity. In this work, a prior-guided adversarial learning with hypergraph (PALH) model is proposed to predict abnormal brain connections using triple-modality medical images. Concretely, a prior distribution from anatomical knowledge is estimated to guide multimodal representation learning using an adversarial strategy. Also, the pairwise collaborative discriminator structure is further utilized to narrow the difference in representation distribution. Moreover, the hypergraph perceptual network is developed to effectively fuse the learned representations while establishing high-order relations within and between multimodal images. Experimental results demonstrate that the proposed model outperforms other related methods in analyzing and predicting AD progression. More importantly, the identified abnormal connections are partly consistent with previous neuroscience discoveries. The proposed model can evaluate the characteristics of abnormal brain connections at different stages of AD, which is helpful for cognitive disease study and early treatment.


Assuntos
Doença de Alzheimer , Encéfalo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/fisiopatologia , Humanos , Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Aprendizado de Máquina , Redes Neurais de Computação , Idoso
13.
ArXiv ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38168455

RESUMO

Effective connectivity estimation plays a crucial role in understanding the interactions and information flow between different brain regions. However, the functional time series used for estimating effective connectivity is derived from certain software, which may lead to large computing errors because of different parameter settings and degrade the ability to model complex causal relationships between brain regions. In this paper, a brain diffuser with hierarchical transformer (BDHT) is proposed to estimate effective connectivity for mild cognitive impairment (MCI) analysis. To our best knowledge, the proposed brain diffuser is the first generative model to apply diffusion models to the application of generating and analyzing multimodal brain networks. Specifically, the BDHT leverages structural connectivity to guide the reverse processes in an efficient way. It makes the denoising process more reliable and guarantees effective connectivity estimation accuracy. To improve denoising quality, the hierarchical denoising transformer is designed to learn multi-scale features in topological space. By stacking the multi-head attention and graph convolutional network, the graph convolutional transformer (GraphConformer) module is devised to enhance structure-function complementarity and improve the ability in noise estimation. Experimental evaluations of the denoising diffusion model demonstrate its effectiveness in estimating effective connectivity. The proposed model achieves superior performance in terms of accuracy and robustness compared to existing approaches. Moreover, the proposed model can identify altered directional connections and provide a comprehensive understanding of parthenogenesis for MCI treatment.

14.
Artigo em Inglês | MEDLINE | ID: mdl-37971911

RESUMO

Fusing structural-functional images of the brain has shown great potential to analyze the deterioration of Alzheimer's disease (AD). However, it is a big challenge to effectively fuse the correlated and complementary information from multimodal neuroimages. In this work, a novel model termed cross-modal transformer generative adversarial network (CT-GAN) is proposed to effectively fuse the functional and structural information contained in functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). The CT-GAN can learn topological features and generate multimodal connectivity from multimodal imaging data in an efficient end-to-end manner. Moreover, the swapping bi-attention mechanism is designed to gradually align common features and effectively enhance the complementary features between modalities. By analyzing the generated connectivity features, the proposed model can identify AD-related brain connections. Evaluations on the public ADNI dataset show that the proposed CT-GAN can dramatically improve prediction performance and detect AD-related brain regions effectively. The proposed model also provides new insights into detecting AD-related abnormal neural circuits.


Assuntos
Doença de Alzheimer , Imagem de Tensor de Difusão , Humanos , Imagem de Tensor de Difusão/métodos , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Aprendizagem
15.
Artigo em Inglês | MEDLINE | ID: mdl-37815971

RESUMO

Integrating the brain structural and functional connectivity features is of great significance in both exploring brain science and analyzing cognitive impairment clinically. However, it remains a challenge to effectively fuse structural and functional features in exploring the complex brain network. In this paper, a novel brain structure-function fusing-representation learning (BSFL) model is proposed to effectively learn fused representation from diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (fMRI) for mild cognitive impairment (MCI) analysis. Specifically, the decomposition-fusion framework is developed to first decompose the feature space into the union of the uniform and unique spaces for each modality, and then adaptively fuse the decomposed features to learn MCI-related representation. Moreover, a knowledge-aware transformer module is designed to automatically capture local and global connectivity features throughout the brain. Also, a uniform-unique contrastive loss is further devised to make the decomposition more effective and enhance the complementarity of structural and functional features. The extensive experiments demonstrate that the proposed model achieves better performance than other competitive methods in predicting and analyzing MCI. More importantly, the proposed model could be a potential tool for reconstructing unified brain networks and predicting abnormal connections during the degenerative processes in MCI.


Assuntos
Disfunção Cognitiva , Imagem de Tensor de Difusão , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem
16.
Sci Rep ; 13(1): 15094, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700018

RESUMO

To address the processing scheduling problem involving multiple molds, components, and floors, we propose the Genetic Grey Wolf Optimizer (GGA) as a means to optimize the production scheduling of components in a production line. This approach combines the Grey Wolf algorithm with the genetic algorithm. Previous methods have overlooked the storage requirements arising from the delivery characteristics of prefabricated components, often resulting in unnecessary storage costs. Intelligent algorithms have been demonstrated to be effective in production scheduling, and thus, to enhance the efficiency of prefabricated component production scheduling, our study presents a model incorporating a production objective function. This model takes into account production resources and delivery characteristics constraints. Subsequently, we develop a hybrid algorithm, combining the grey wolf algorithm with the genetic algorithm, to search for the optimal solution with a minimal storage cost. We validate the model using a case study, and the experimental results demonstrate that GAGWO successfully identifies the best precast production schedule. Furthermore, the precast production plan, considering the delivery method, is found to be reasonable.

18.
IEEE Trans Med Imaging ; 42(12): 3651-3664, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37527297

RESUMO

In multi-site studies of Alzheimer's disease (AD), the difference of data in multi-site datasets leads to the degraded performance of models in the target sites. The traditional domain adaptation method requires sharing data from both source and target domains, which will lead to data privacy issue. To solve it, federated learning is adopted as it can allow models to be trained with multi-site data in a privacy-protected manner. In this paper, we propose a multi-site federated domain adaptation framework via Transformer (FedDAvT), which not only protects data privacy, but also eliminates data heterogeneity. The Transformer network is used as the backbone network to extract the correlation between the multi-template region of interest features, which can capture the brain abundant information. The self-attention maps in the source and target domains are aligned by applying mean squared error for subdomain adaptation. Finally, we evaluate our method on the multi-site databases based on three AD datasets. The experimental results show that the proposed FedDAvT is quite effective, achieving accuracy rates of 88.75%, 69.51%, and 69.88% on the AD vs. NC, MCI vs. NC, and AD vs. MCI two-way classification tasks, respectively.


Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Doença de Alzheimer/diagnóstico por imagem , Neuroimagem/métodos , Aprendizado de Máquina , Interpretação de Imagem Assistida por Computador/métodos
19.
PLoS One ; 18(7): e0288742, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37494332

RESUMO

In prefabricated buildings, there are numerous types of prefabricated components, forming a complex combination of schemes that are difficult to select. Therefore, this article takes prefabricated components combination schemes as the object. By constructing the evaluation index system through four aspects of assembly rate, cost, duration, and carbon footprint, then using the fuzzy gray correlation projection method to evaluate and select. A residential in Wuhan, China, was enlisted to conduct a case study to show the application of the proposed method. Results indicate that among the six choices, the L scheme is optimal, and the selection order of the prefabricated components in different scenarios is ranked. The results reveal that the method has good applicability, simultaneously provides a reasonable and effective reference for each participant of the assembled building when making scheme comparison, and also provides a new method for the evaluation study of prefabricated component combination schemes.


Assuntos
Pegada de Carbono , Humanos , Cidades , China
20.
Front Neurosci ; 17: 1203104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383107

RESUMO

Recent years have witnessed a significant advancement in brain imaging techniques that offer a non-invasive approach to mapping the structure and function of the brain. Concurrently, generative artificial intelligence (AI) has experienced substantial growth, involving using existing data to create new content with a similar underlying pattern to real-world data. The integration of these two domains, generative AI in neuroimaging, presents a promising avenue for exploring various fields of brain imaging and brain network computing, particularly in the areas of extracting spatiotemporal brain features and reconstructing the topological connectivity of brain networks. Therefore, this study reviewed the advanced models, tasks, challenges, and prospects of brain imaging and brain network computing techniques and intends to provide a comprehensive picture of current generative AI techniques in brain imaging. This review is focused on novel methodological approaches and applications of related new methods. It discussed fundamental theories and algorithms of four classic generative models and provided a systematic survey and categorization of tasks, including co-registration, super-resolution, enhancement, classification, segmentation, cross-modality, brain network analysis, and brain decoding. This paper also highlighted the challenges and future directions of the latest work with the expectation that future research can be beneficial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...