Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Immunotargets Ther ; 13: 343-348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978969

RESUMO

Unresectable recurrent lymph node metastasis of colorectal cancer (CRC) is considered as an incurable disease clinically and has a very poor prognosis. Here, we report a male KRAS wild-type CRC case with a huge abdominal lymph node metastasis (12 cm in diameter) after CRC surgery. After three intratumoral injections of oncolytic virus (H101) combined with four cycles of low-dose oral capecitabine, the size of the metastatic lymph node shrank remarkably in response to the anticancer drug and a complete response (CR) was achieved with progression-free survival (PFS) of 19 months. The main adverse reaction was mild fever, which was relieved after physical cooling. The patient is in a general good condition now without any relapse of abdominal lymph node for over a year. On this basis, we propose that the combination therapy of oncolytic virus and capecitabine could be a promising clinical therapeutic strategy for unresectable recurrent lymph node metastasis in CRC patients.

2.
Br J Ophthalmol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981665

RESUMO

AIM: To evaluate the short-term effects of different sunlight exposure on fundus blood flow perfusion (BFP) after near work. METHODS: In this parallel randomised controlled trial, 81 students aged 7-15 with spherical equivalent refraction between -2.00 and +3.00 diopters were randomly assigned to either a low-illuminance (4k lux) group (N=40) or high-illuminance (10k lux) (N=41). Following 1 hour indoor reading, participants had sunlight exposure matching their group's intensity for 15 minutes. BFPs in the superficial retina, deep retina and choroid were measured at four time points: pre-reading, post-reading, 5th-minute and 15th-minute sunlight exposure. RESULTS: Within the initial 5 minutes of sunlight exposure, the 10k lux group showed a tendency for decreased BFP, particularly in the choroid (superficial retina: -0.2, 95% CI -0.9 to 0.5; deep retina: -0.1, 95% CI -0.6 to 0.4; choroid: -0.4, 95% CI -0.8 to 0.0), while the 4k lux group exhibited an increase (superficial retina: 0.7, 95% CI 0.1 to 1.3; deep retina: 0.3, 95% CI -0.2 to 0.8; choroid: 0.1, 95% CI -0.2 to 0.5). From 5 to 15 minutes, BFP decreased in both groups. At the 5th-minute mark, the 10k lux group exhibited a greater decrease in choroid (10k -0.4 vs 4k 0.1, p=0.051). No significant difference was observed after 15 minutes of exposure. CONCLUSION: Higher illuminance sunlight exposure can restore fundus BFP more rapidly than lower; however, duration remains pivotal. To prevent myopia, continuous sunlight exposure for over 15 minutes is recommended to aid in reinstating the fundus BFP increased by near work. TRIAL REGISTRATION NUMBER: NCT05594732.

3.
Cancer Sci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992901

RESUMO

The incomplete prediction of prognosis in esophageal squamous cell carcinoma (ESCC) patients is attributed to various therapeutic interventions and complex prognostic factors. Consequently, there is a pressing demand for enhanced predictive biomarkers that can facilitate clinical management and treatment decisions. This study recruited 491 ESCC patients who underwent surgical treatment at Huashan Hospital, Fudan University. We incorporated 14 blood metabolic indicators and identified independent prognostic indicators for overall survival through univariate and multivariate analyses. Subsequently, a metabolism score formula was established based on the biochemical markers. We constructed a nomogram and machine learning models utilizing the metabolism score and clinically significant prognostic features, followed by an evaluation of their predictive accuracy and performance. We identified alkaline phosphatase, free fatty acids, homocysteine, lactate dehydrogenase, and triglycerides as independent prognostic indicators for ESCC. Subsequently, based on these five indicators, we established a metabolism score that serves as an independent prognostic factor in ESCC patients. By utilizing this metabolism score in conjunction with clinical features, a nomogram can precisely predict the prognosis of ESCC patients, achieving an area under the curve (AUC) of 0.89. The random forest (RF) model showed superior predictive ability (AUC = 0.90, accuracy = 86%, Matthews correlation coefficient = 0.55). Finally, we used an RF model with optimal performance to establish an online predictive tool. The metabolism score developed in this study serves as an independent prognostic indicator for ESCC patients.

4.
Langmuir ; 40(28): 14346-14354, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953474

RESUMO

The issue of bacterial infectious diseases remains a significant concern worldwide, particularly due to the misuse of antibiotics, which has caused the emergence of antibiotic-resistant strains. Fortunately, the rapid development of nanomaterials has propelled significant progress in antimicrobial therapy, offering promising solutions. Among them, the utilization of nanoenzyme-based chemodynamic therapy (CDT) has become a highly hopeful approach to combating bacterial infectious diseases. Nevertheless, the application of CDT appears to be facing certain constraints for its low efficiency in the Fenton reaction at the infected site. In this study, we have successfully synthesized a versatile nanozyme, which was a composite of molybdenum sulfide (MoS2) and iron sulfide (FeS2), through the hydrothermal method. The results showed that iron/molybdenum sulfide nanozymes (Fe/Mo SNZs) with desirable peroxidase (POD) mimic activity can generate cytotoxic reactive oxygen species (ROS) by successfully triggering the Fenton reaction. The presence of MoS2 significantly accelerates the conversion of Fe2+/Fe3+ through a cocatalytic reaction that involves the participation of redox pairs of Mo4+/Mo6+, thereby enhancing the efficiency of CDT. Additionally, based on the excellent photothermal performance of Fe/Mo SNZs, a near-infrared (NIR) laser was used to induce localized temperature elevation for photothermal therapy (PTT) and enhance the POD-like nanoenzymatic activity. Notably, both in vitro and in vivo results demonstrated that Fe/Mo SNZs with good broad-spectrum antibacterial properties can help eradicate Gram-negative bacteria like Escherichia coli and Gram-positive bacteria like Staphylococcus aureus. The most exciting thing is that the synergistic PTT/CDT exhibited astonishing antibacterial ability and can achieve complete elimination of bacteria, which promoted wound healing after infection. Overall, this study presents a synergistic PTT/CDT strategy to address antibiotic resistance, providing avenues and directions for enhancing the efficacy of wound healing treatments and offering promising prospects for further clinical use in the near future.


Assuntos
Antibacterianos , Dissulfetos , Ferro , Molibdênio , Sulfetos , Cicatrização , Molibdênio/química , Molibdênio/farmacologia , Cicatrização/efeitos dos fármacos , Sulfetos/química , Sulfetos/farmacologia , Animais , Dissulfetos/química , Dissulfetos/farmacologia , Ferro/química , Ferro/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Catálise , Staphylococcus aureus/efeitos dos fármacos , Camundongos , Escherichia coli/efeitos dos fármacos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Nanoestruturas/química , Fototerapia , Testes de Sensibilidade Microbiana , Terapia Fototérmica , Compostos Ferrosos
5.
Front Pharmacol ; 15: 1404532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828455

RESUMO

Cancer targeted therapy is essential to minimize damage to normal cells and improve treatment outcomes. The elevated activity of Cystathionine beta-synthase (CBS), an enzyme responsible for producing endogenous hydrogen sulfide (H2S), plays a significant role in promoting tumor growth, invasiveness, and metastatic potential. Consequently, the selective inhibition of CBS could represent a promising therapeutic strategy for cancer. Currently, there is much interest in combining paclitaxel with other drugs for cancer treatment. This study aimed to investigate the efficacy of combining benserazide, a CBS inhibitor, with paclitaxel in treating tumors. Firstly, we demonstrated CBS is indeed involved in the progression of multiple cancers. Then it was observed that the total binding free energy between the protein and the small molecule is -98.241 kJ/mol. The release of H2S in the group treated with 100 µM benserazide was reduced by approximately 90% compared to the negative control, and the thermal denaturation curve of the complex protein shifted to the right, suggesting that benserazide binds to and blocks the CBS protein. Next, it was found that compared to paclitaxel monotherapy, the combination of benserazide with paclitaxel demonstrated stronger antitumor activity in KYSE450, A549, and HCT8 cells, accompanied by reduced cell viability, cell migration and invasion, as well as diminished angiogenic and lymphangiogenic capabilities. In vivo studies showed that the combined administration of benserazide and paclitaxel significantly reduced the volume and weight of axillary lymph nodes in comparison to the control group and single administration group. Further mechanistic studies revealed that the combination of benserazide and paclitaxel significantly suppressed the S-sulfhydration of SIRT1 protein, thereby inhibiting the expression of SIRT1 protein and activating SIRT1 downstream Notch1/Hes1 signaling pathway in KYSE450, A549, and HCT8 cells. Meanwhile, we observed that benserazide combined with paclitaxel induced a more significant downregulation of HIF-1α, VEGF-A, VEGF-C, and VEGF-D proteins expression levels in KYSE450, A549, and HCT8 cells compared to paclitaxel alone. These findings indicated that benserazide enhances the anticancer effects of paclitaxel via inhibiting the S-sulfhydration of SIRT1 and down-regulating HIF-1α/VEGF signaling pathway. This study suggests that benserazide may have potential as a chemosensitizer in cancer treatment.

6.
Hepatobiliary Surg Nutr ; 13(3): 444-459, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38911190

RESUMO

Background: Concerns over the security of laparoscopic radical operation for gallbladder cancer (GBC) persist. This systematic review and meta-analysis attempted to compare the safety and efficacy of laparoscopic surgery (LS) versus open surgery (OS) in the treatment of GBC. Methods: The PubMed, EMBASE, and Web of Science were searched from inception to July 18, 2022. Literature search, quality assessment, and data extraction were completed independently and in duplicate. Effect-size estimates expressed as weighted mean difference (WMD) or odds ratio (OR) with 95% confidence interval (CI) were derived under the random-effects model. Results: A total of 27 independent studies including 2,868 participants were meta-analyzed. Significance was noted for intraoperative blood loss (WMD: -117.194, 95% CI: -170.188 to 64.201, P<0.001), harvested lymph nodes (WMD: -1.023, 95% CI: -1.776 to -0.269, P=0.008), postoperative hospital stay (WMD: -3.555, 95% CI: -4.509 to -2.601, P<0.001), postoperative morbidity (OR: 0.596, 95% CI: 0.407 to 0.871, P=0.008), overall survival rate at 2-year (OR: 1.524, 95% CI: 1.143 to 2.031, P=0.004), T2 survival at 1-year (OR: 1.799, 95% CI: 1.777 to 2.749, P<0.01) and 2-year (OR: 2.026, 95% CI: 1.392 to 2.949, P<0.001), as well as T3 survival at 1-year (OR: 2.669, 95% CI: 1.564 to 4.555, P<0.001) and 2-year (OR: 2.300, 95% CI: 1.308 to 4.046, P=0.004). Subgroup analyses revealed that ethnicity, incidental GBC, sample size, and follow-up period were possible sources of heterogeneity. There was a low probability of publication bias for all outcomes except postoperative morbidity. Conclusions: Our findings indicated that LS statistically had better 2-year survival rates, less intraoperative bleeding, shorter hospitalization times, and lower rates of complications than OS. However, the superiority and even the safety of LS still remain an open question due to the impact of incidental GBC, unaccounted heterogeneity, publication bias, lymph node dissection, and port-site metastasis.

7.
Adv Healthc Mater ; : e2400533, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722018

RESUMO

Periodontitis, a prevalent inflammatory condition in the oral cavity, is closely associated with oxidative stress-induced tissue damage mediated by excessive reactive oxygen species (ROS) production. The jaw vascular unit (JVU), encompassing both vascular and lymphatic vessels, plays a crucial role in maintaining tissue fluid homeostasis and contributes to the pathological process in inflammatory diseases of the jaw. This study presents a novel approach for treating periodontitis through the development of an injectable thermosensitive gel (CH-BPNs-NBP). The gel formulation incorporates black phosphorus nanosheets (BPNs), which are notable for their ROS-scavenging properties, and dl-3-n-butylphthalide (NBP), a vasodilator that promotes lymphatic vessel function within the JVU. These results demonstrate that the designed thermosensitive gel serve as a controlled release system, delivering BPNs and NBP to the site of inflammation. CH-BPNs-NBP not only protects macrophages and human lymphatic endothelial cells from ROS attack but also promotes M2 polarization and lymphatic function. In in vivo studies, this work observes a significant reduction in inflammation and tissue damage, accompanied by a notable promotion of alveolar bone regeneration. This research introduces a promising therapeutic strategy for periodontitis, leveraging the unique properties of BPNs and NBP within an injectable thermosensitive gel.

8.
Cell Death Discov ; 10(1): 254, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789431

RESUMO

The nuclear receptor Nur77 plays paradoxical roles in numerous cancers. However, whether Nur77 inhibits esophageal squamous cell carcinoma (ESCC) growth and affects immunological responses against ESCC has not been determined. The functional role of Nur77 in ESCC was investigated in this study using human ESCC cell lines, quantitative real-time polymerase chain reaction (PCR), cell proliferation and colony formation assays, flow cytometry analysis, western blotting and animal models. The target gene controlled by Nur77 was verified using dual-luciferase reporter assays, chromatin immunoprecipitation analysis and functional rescue experiments. To examine the clinical importance of Nur77, 72 human primary ESCC tissues were subjected to immunohistochemistry. Taken together, these findings showed that, both in vitro and in vivo, Nur77 dramatically reduced ESCC cell growth and triggered apoptosis. Nur77 directly interacts with the interferon regulatory factor 1 (IRF1) promoter to inhibit its activity in ESCC. Pharmacological induction of Nur77 using cytosporone B (CsnB) inhibited ESCC cell proliferation and promoted apoptosis both in vitro and in vivo. Furthermore, CsnB increased CD8+ T-cell infiltration and cytotoxicity to inhibit the formation of ESCC tumors in an immunocompetent mouse model. In ESCC tissues, Nur77 expression was downregulated, and IRF1 expression was increased; moreover, their expression levels were negatively related. IRF1 and Nur77 were strongly correlated with overall survival. These findings suggested that Nur77 targets and regulates the IRF1/PD-L1 axis to serve as a tumor suppressor in ESCC. Graphical abstract of the regulatory mechanism of Nur77 overexpression downregulates IRF1 in the inhibition of ESCC progression and enhance anti-PD-1 therapy efficacy.

9.
ACS Appl Mater Interfaces ; 16(20): 25799-25812, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38727024

RESUMO

The excess production of reactive oxygen species (ROS) will delay tooth extraction socket (TES) healing. In this study, we developed an injectable thermosensitive hydrogel (NBP@BP@CS) used to treat TES healing. The hydrogel formulation incorporated black phosphorus (BP) nanoflakes, recognized for their accelerated alveolar bone regeneration and ROS-scavenging properties, and dl-3-n-butylphthalide (NBP), a vasodilator aimed at enhancing angiogenesis. In vivo investigations strongly demonstrated that NBP@BP@CS improved TES healing due to antioxidation and promotion of alveolar bone regeneration by BP nanoflakes. The sustained release of NBP from the hydrogel promoted neovascularization and vascular remodeling. Our results demonstrated that the designed thermosensitive hydrogel provided great opportunity not only for ROS elimination but also for the promotion of osteogenesis and angiogenesis, reflecting the "three birds with one stone" concept, and has tremendous potential for rapid TES healing.


Assuntos
Hidrogéis , Fósforo , Extração Dentária , Cicatrização , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Fósforo/química , Alvéolo Dental/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Osteogênese/efeitos dos fármacos , Ratos , Regeneração Óssea/efeitos dos fármacos , Masculino
10.
J Exp Clin Cancer Res ; 43(1): 114, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627815

RESUMO

BACKGROUND: The efficacy of anti-PD-1 therapy is primarily hindered by the limited T-cell immune response rate and immune evasion capacity of tumor cells. Autophagy-related protein 7 (ATG7) plays an important role in autophagy and it has been linked to cancer. However, the role of ATG7 in the effect of immune checkpoint blockade (ICB) treatment on high microsatellite instability (MSI-H)/mismatch repair deficiency (dMMR) CRC is still poorly understood. METHODS: In this study, patients from the cancer genome altas (TCGA) COAD/READ cohorts were used to investigate the biological mechanism driving ATG7 development. Several assays were conducted including the colony formation, cell viability, qRT-PCR, western blot, immunofluorescence, flow cytometry, ELISA, immunohistochemistry staining and in vivo tumorigenicity tests. RESULTS: We found that ATG7 plays a crucial role in MSI-H CRC. Its knockdown decreased tumor growth and caused an infiltration of CD8+ T effector cells in vivo. ATG7 inhibition restored surface major histocompatibility complex I (MHC-I) levels, causing improved antigen presentation and anti-tumor T cell response by activating reactive oxygen species (ROS)/NF-κB pathway. Meanwhile, ATG7 inhibition also suppressed cholesterol accumulation and augmentation of anti-tumor immune responses. Combining ATG7 inhibition and statins improved the therapeutic benefit of anti-PD-1 in MSI-H CRC. Importantly, CRC patients with high expression of both ATG7 and recombinant 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) experienced worse prognosis compared to those with low ATG7 and HMGCR expression. CONCLUSIONS: Inhibition of ATG7 leads to upregulation of MHC-I expression, augments immune response and suppresses cholesterol accumulation. These findings demonstrate that ATG7 inhibition has therapeutic potential and application of statins can increase the sensitivity to immune checkpoint inhibitors.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Inibidores de Hidroximetilglutaril-CoA Redutases , Síndromes Neoplásicas Hereditárias , Humanos , Proteína 7 Relacionada à Autofagia/genética , Colesterol , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Reparo de Erro de Pareamento de DNA , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade , Instabilidade de Microssatélites
11.
Oncol Res Treat ; 47(6): 273-286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38636467

RESUMO

BACKGROUND: The cancers of the digestive tract, including colorectal cancer (CRC), gastric cancer, and esophageal cancer, are part of the most common cancers as well as one of the most important leading causes of cancer death worldwide. SUMMARY: Despite the emergence of immune checkpoint inhibitors (e.g., anti-CTLA-4 and anti-PD-1/PD-L1) in the past decade, offering renewed optimism in cancer treatment, only a fraction of patients derive benefit from these therapies. This limited efficacy may stem from tumor heterogeneity and the impact of metabolic reprogramming on both tumor cells and immune cells within the tumor microenvironment (TME). The metabolic reprogramming of glucose, lipids, amino acids, and other nutrients represents a pivotal hallmark of cancer, serving to generate energy, reducing equivalent and biological macromolecule, thereby fostering tumor proliferation and invasion. Significantly, the metabolic reprogramming of tumor cells can orchestrate changes within the TME, rendering patients unresponsive to immunotherapy. KEY MESSAGES: In this review, we predominantly encapsulate recent strides on metabolic reprogramming among digestive tract cancer, especially CRC, in the TME with a focus on how these alterations influence anti-tumor immunity. Additionally, we deliberate on potential strategies to address these abnormities in metabolic pathways and the viability of combined therapy within the realm of anti-cancer immunotherapy.


Assuntos
Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias Gastrointestinais/imunologia , Neoplasias Gastrointestinais/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Neoplasias do Sistema Digestório/imunologia , Neoplasias do Sistema Digestório/metabolismo , Animais , Reprogramação Metabólica
12.
Front Chem ; 12: 1356029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406557

RESUMO

Introduction: Polymethyl methacrylate is a polymer commonly used in clinical dentistry, including denture bases, occlusal splints and orthodontic retainers. Methods: To augment the polymethyl methacrylate-based dental appliances in counteracting dental caries, we designed a polymer blend film composed of polymethyl methacrylate and polyethylene oxide by solution casting and added sodium fluoride. Results: Polyethylene oxide facilitated the dispersion of sodium fluoride, decreased the surface average roughness, and positively influenced the hydrophilicity of the films. The blend film made of polymethyl methacrylate, polyethylene oxide and NaF with a mass ratio of 10: 1: 0.3 showed sustained release of fluoride ions and acceptable cytotoxicity. Antibacterial activity of all the films to Streptococcus mutans was negligible. Discussion: This study demonstrated that the polymer blends of polyethylene oxide and polymethyl methacrylate could realize the relatively steady release of fluoride ions with high biocompatibility. This strategy has promising potential to endow dental appliances with anti-cariogenicity.

13.
Head Neck ; 46(8): 2031-2041, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38379404

RESUMO

BACKGROUND: Monoamine oxidase B (MAOB), a flavin monoamine oxidase, regulates biogenic and xenobiotic amine oxidative deaminization. We demonstrate MAOB expression in head and neck epithelium and its biological importance in head and neck squamous cell carcinoma (HNSCC) development. METHODS: First, we found a possible MAOB downregulation in HNSCC using bioinformatic analysis. Second, we validated MAOB expression changes in vitro and assessed its tumorigenicity in HNSCC. Finally, preclinical xenograft models further confirmed our findings. RESULTS: Results proved that MAOB was significantly reduced in HNSCC tissues and cell lines. By comparing MAOB localization in patient specimens, we found that epithelial basal cells express MAOB and that it changes throughout HNSCC development. We observed that MAOB overexpression inhibited HNSCC cell malignancy via lentiviral transfection. We additionally discovered that selegiline partly counter-regulated MAOB overexpression-induced phenotypes in HNSCC cells. CONCLUSIONS: We found that MAOB is a potent biomarker and a unique and essential indication of HNSCC carcinogenesis.


Assuntos
Apoptose , Carcinoma de Células Escamosas , Transição Epitelial-Mesenquimal , Neoplasias de Cabeça e Pescoço , Monoaminoxidase , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Monoaminoxidase/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Animais , Camundongos , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Sistema de Sinalização das MAP Quinases , Feminino , Masculino , Selegilina/farmacologia , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica
14.
Pharmacol Res ; 201: 107097, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354870

RESUMO

As the world's fourth most deadly cancer, colorectal cancer (CRC) still needed the novel therapeutic drugs and target urgently. Although cyclin-dependent kinase 12 (CDK12) has been shown to be implicated in the malignancy of several types of cancer, its functional role and mechanism in CRC remain largely unknown. Here, we found that suppression of CDK12 inhibited tumor growth in CRC by inducing apoptosis. And CDK12 inhibition triggered autophagy by upregulating autophagy related gene 7 (ATG7) expression. Inhibition of autophagy by ATG7 knockdown and chloroquine (CQ) further decreased cell viability induced by CDK12 inhibition. Further mechanism exploration showed that CDK12 interacted with protein kinase B (AKT) regulated autophagy via AKT/forkhead box O3 (AKT/FOXO3) pathway. FOXO3 transcriptionally upregulated ATG7 expression and autophagy when CDK12 inhibition in CRC. Level of CDK12 and p-FOXO3/FOXO3 ratio were correlated with survival in CRC patients. Moreover, CDK12 inhibition improved the efficacy of anti-programmed cell death 1(PD-1) therapy in CRC murine models by enhancing CD8 + T cells infiltration. Thus, our study founded that CDK12 inhibition upregulates ATG7 triggering autophagy via AKT/FOXO3 pathway and enhances anti-PD-1 efficacy in CRC. We revealed the roles of CDK12/FOXO3/ATG7 in regulating CRC progression, suggesting potential biomarkers and therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas c-akt , Humanos , Animais , Camundongos , Quinases Ciclina-Dependentes , Apoptose , Autofagia , Neoplasias Colorretais/tratamento farmacológico , Proteína Forkhead Box O3
15.
Dig Surg ; 41(1): 42-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38295782

RESUMO

INTRODUCTION: This study aimed to evaluate associations between frailty and outcomes in patients with intrahepatic cholangiocarcinoma (ICC) undergoing hepatic lobectomy using a large, nationally representative sample. METHODS: This population-based, retrospective observational study extracted the data of adults ≥20 years old with ICC undergoing hepatic lobectomy from the US Nationwide Inpatient Sample database between 2005 and 2018. Frailty was assessed by the validated Hospital Frailty Risk Score (HFRS). Associations between frailty and surgical outcomes were analyzed using logistic regression analyses. RESULTS: After exclusions, 777 patients were enrolled, including 427 frail and 350 non-frail. Patients' mean age was 64.5 (±0.4) years and the majority were males (51.1%) and whites (76.5%). Frailty was significantly associated with increased odds of in-hospital mortality (aOR: 18.51, 95% CI: 6.70, 51.18), non-home discharge (aOR: 3.58, 95% CI: 2.26, 5.66), prolonged LOS (aOR: 5.56, 95% CI: 3.87, 7.99), perioperative cardiac arrest/stroke (aOR: 5.44, 95% CI: 1.62, 18.24), acute respiratory distress syndrome (ARDS)/respiratory failure (aOR: 3.88, 95% CI: 2.40, 6.28), tracheostomy/ventilation (aOR: 3.83, 95% CI: 2.23, 6.58), bleeding/transfusion (aOR: 1.67, 95% CI: 1.24, 2.26), acute kidney injury (AKI) (aOR: 14.37, 95% CI: 7.13, 28.99), postoperative shock (aOR: 4.44, 95% CI: 2.54, 7.74), and sepsis (aOR: 11.94, 95% CI: 6.90, 20.67). DISCUSSION/CONCLUSION: Among patients with ICC undergoing hepatic lobectomy, HFRS-defined frailty is a strong predictor of worse in-patient outcomes, including in-hospital death, prolonged LOS, unfavorable discharge, and complications (perioperative cardiac arrest/stroke, ARDS/respiratory failure, tracheostomy/ventilation, bleeding/transfusion, AKI, postoperative shock, and sepsis). Study results may help stratify risk in frail patients undergoing hepatic resection for ICC.


Assuntos
Injúria Renal Aguda , Colangiocarcinoma , Fragilidade , Parada Cardíaca , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Sepse , Acidente Vascular Cerebral , Adulto , Masculino , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Feminino , Pacientes Internados , Fragilidade/complicações , Fragilidade/epidemiologia , Mortalidade Hospitalar , Estudos Retrospectivos , Colangiocarcinoma/cirurgia , Fatores de Risco , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Tempo de Internação
16.
Curr Med Res Opin ; 40(3): 441-453, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38193524

RESUMO

OBJECTIVE: This study aimed to evaluate the real-world clinical efficacy and safety, economic burdens and medical resource utilization (MRU) of toripalimab treatment patterns compared with bevacizumab plus chemotherapy (BCP) for patients with advanced non-squamous NSCLC in China. METHODS: Progression-free survival (PFS), adverse drug reactions (ADR) and the costs of drugs, laboratory testing, imageology examinations (including CT, B ultrasound, MRI), medical service, nursing, treatment, genetic test and medical disposable material were compared between two groups. A retrospective observational study was conducted with electronic medical records from Fudan University Huashan hospital. Data was obtained from established electronic medical records (EMRs) and patient surveys. Survival time from the study enrollment to disease progression or death plus from 1st progression disease (PD) in the maintenance phase to 2nd PD (PFS II), adverse events (AE), direct medical costs, MRU and AE-related costs were collected and compared between toripalimab group and BCP group. A total of 246 patients were enrolled. RESULTS: Toripalimab combination therapy has significantly prolonged PFS comparing with BCP (13.8 months vs. 6.2 months, p < .001). A statistically significant improvement in PFS was observed favoring all toripalimab regimen subgroups compared with the bevacizumab group. Patients in toripalimab group occupied more overall resource consumption, more direct medical costs ($47,056.9 vs. $29,951.0, p < .0001) and AE-related costs ($4,500.2 vs. $784.4, p < .0001) than BCP group. Although patients in the toripalimab group used more drugs to prevent AEs ($4,500.2 vs. $784.4, p < .0001), they still experienced more AEs than patients in BCP group (51.4% vs. 41.4%). CONCLUSION: Toripalimab combination therapy could significantly prolonged PFS for patients with advanced non-squamous NSCLC compared with BCP, but at the expense of more MRU, costs and AEs.


Assuntos
Anticorpos Monoclonais Humanizados , Bevacizumab , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Bevacizumab/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico
17.
Nat Commun ; 15(1): 180, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167338

RESUMO

Inactivating TP53 mutations leads to a loss of function of p53, but can also often result in oncogenic gain-of-function (GOF) of mutant p53 (mutp53) proteins which promotes tumor development and progression. The GOF activities of TP53 mutations are well documented, but the mechanisms involved remain poorly understood. Here, we study the mutp53 interactome and find that by targeting minichromosome maintenance complex components (MCMs), GOF mutp53 predisposes cells to replication stress and chromosomal instability (CIN), leading to a tumor cell-autonomous and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-dependent cytosolic DNA response that activates downstream non-canonical nuclear factor kappa light chain enhancer of activated B cell (NC-NF-κB) signaling. Consequently, GOF mutp53-MCMs-CIN-cytosolic DNA-cGAS-STING-NC-NF-κB signaling promotes tumor cell metastasis and an immunosuppressive tumor microenvironment through antagonizing interferon signaling and regulating genes associated with pro-tumorigenic inflammation. Our findings have important implications for understanding not only the GOF activities of TP53 mutations but also the genome-guardian role of p53 and its inactivation during tumor development and progression.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias/genética , DNA , Instabilidade Cromossômica/genética , Nucleotidiltransferases/metabolismo , Interferons/metabolismo , Microambiente Tumoral
18.
J Chemother ; 36(1): 61-71, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37151185

RESUMO

A total of 162 non-small cell lung cancer (NSCLC) patients were divided into discovery (N = 68) and validation (N = 94) groups. Nine Janus kinase/Signal transducer and activator of transcription (JAK/STAT) pathway-related single nucleotide polymorphisms were selected to explore the potential associations between genetic polymorphisms and adverse drug reactions (ADRs). The TT genotype of STAT6 rs324011 was significantly associated with severe ADRs in the recessive genetic model (TT vs. CC + CT, OR = 13.5, 95% CI = 2.12-86.09, p = 0.006 in the discovery group; OR = 8.41, 95% CI = 1.95-36.19, p = 0.004 in the validation group). The T allele was associated with a higher incidence of severe ADRs than was the C allele of rs324011 (OR = 3.67, 95% CI = 1.46-9.19, p = 0.006 in the discovery group; OR = 3.17, 95% CI = 1.44-6.99, p = 0.004 in the validation group). Patients with the CC genotype in STAT3 rs1053023 (and rs1053005) or the TT genotype of STAT6 rs324011 were likely to experience severe epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) related ADRs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Receptores ErbB , China , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT3
19.
Biochem Pharmacol ; 219: 115939, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000560

RESUMO

Carfilzomib, a second-generation proteasome inhibitor, has been approved as a treatment for relapsed and/or refractory multiple myeloma. Nevertheless, the molecular mechanism by which Carfilzomib inhibits esophageal squamous cell carcinoma (ESCC) progression largely remains to be determined. In the present study, we found that Carfilzomib demonstrated potent anti-tumor activity against esophageal squamous cell carcinoma both in vitro and in vivo. Mechanistically, carfilzomib triggers mitochondrial apoptosis and reprograms cellular metabolism in ESCC cells. Moreover, it has been identified that activating transcription factor 3 (ATF3) plays a crucial cellular target role in ESCC cells treated with Carfilzomib. Overexpression of ATF3 effectively antagonized the effects of carfilzomib on ESCC cell proliferation, apoptosis, and metabolic reprogramming. Furthermore, the ATF3 protein is specifically bound to lactate dehydrogenase A (LDHA) to effectively suppress LDHA-mediated metabolic reprogramming in response to carfilzomib treatment. Research conducted in xenograft models demonstrates that ATF3 mediates the anti-tumor activity of Carfilzomib. The examination of human esophageal squamous cell carcinoma indicated that ATF3 and LDHA have the potential to function as innovative targets for therapeutic intervention in the treatment of ESCC. Our findings demonstrate the novel function of Carfilzomib in modulating ESCC metabolism and progression, highlighting the potential of Carfilzomib as a promising therapeutic agent for the treatment of ESCC.


Assuntos
Fator 3 Ativador da Transcrição , Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias Esofágicas , Oligopeptídeos , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Oligopeptídeos/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Xenoenxertos , Transplante de Neoplasias , Humanos , Animais , Camundongos , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Apoptose , Reprogramação Metabólica/efeitos dos fármacos , Fator 3 Ativador da Transcrição/metabolismo
20.
Mol Cell Biochem ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072894

RESUMO

Malignant gliomas are an exceptionally lethal form of cancer with limited treatment options. Dihydroartemisinin (DHA), a sesquiterpene lactone antimalarial compound, has demonstrated therapeutic effects in various solid tumors. In our study, we aimed to investigate the mechanisms underlying the anticancer effects of DHA in gliomas. To explore the therapeutic and molecular mechanisms of DHA, we employed various assays, including cell viability, flow cytometry, mitochondrial membrane potential, glucose uptake and glioma xenograft models. Our data demonstrated that DHA significantly inhibited glioma cell proliferation in both temozolomide-resistant cells and glioma stem-like cells. We found that DHA-induced apoptosis occurred via the mitochondria-mediated pathway by initiating mitochondrial dysfunction before promoting apoptosis. Moreover, we discovered that DHA treatment substantially reduced the expression of the mitochondrial biogenesis-related gene, ERRα, in glioma cells. And the ERRα pathway is a critical target in treating glioma with DHA. Our results also demonstrated that the combination of DHA and temozolomide synergistically inhibited the proliferation of glioma cells. In vivo, DHA treatment remarkably extended survival time in mice bearing orthotopic glioblastoma xenografts. Thus, our findings suggest that DHA has a novel role in modulating cancer cell metabolism and suppressing glioma progression by activating the ERRα-regulated mitochondrial apoptosis pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...