Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(33): 21939-21947, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39115247

RESUMO

In moiré crystals resulting from the stacking of twisted two-dimensional (2D) layered materials, a subtle adjustment in the twist angle surprisingly gives rise to a wide range of correlated optical and electrical properties. Herein, we report the synthesis of supertwisted WS2 spirals and the observation of giant second harmonic generation (SHG) in these spirals. Supertwisted WS2 spirals featuring different twist angles are synthesized on a Euclidean or step-edge particle-induced non-Euclidean surface using carefully designed water-assisted chemical vapor deposition. We observed an oscillatory dependence of SHG intensity on layer number, attributed to atomically phase-matched nonlinear dipoles within layers of supertwisted spiral crystals where inversion symmetry is restored. Through an investigation into the twist angle evolution of SHG intensity, we discovered that the stacking model between layers plays a crucial role in determining the nonlinearity, and the SHG signals in supertwisted spirals exhibit enhancements by a factor of 2 to 136 when compared with the SHG of the single-layer structure. These findings provide helpful perspectives on the rational growth of 2D twisted structures and the implementation of twist angle adjustable endowing them great potential for exploring strong coupling correlation physics and applications in the field of twistronics.

2.
Plant Cell Environ ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087790

RESUMO

Cold stress negatively impacts the growth, development, and quality of Camellia sinensis (Cs, tea) plants. CBL-interacting protein kinases (CIPK) comprise a pivotal protein family involved in plant development and response to multiple environmental stimuli. However, their roles and regulatory mechanisms in tea plants (Camellia sinensis (L.) O. Kuntze) remain unknown. Here we show that CsCBL-interacting protein kinase 11 (CsCIPK11), whose transcript abundance was significantly induced at low temperatures, interacts and phosphorylates tau class glutathione S-transferase 23 (CsGSTU23). CsGSTU23 was also a cold-inducible gene and has significantly higher transcript abundance in cold-resistant accessions than in cold-susceptible accessions. CsCIPK11 phosphorylated CsGSTU23 at Ser37, enhancing its stability and enzymatic activity. Overexpression of CsCIPK11 in Arabidopsis thaliana resulted in enhanced cold tolerance under freezing conditions, while transient knockdown of CsCIPK11 expression in tea plants had the opposite effect, resulting in decreased cold tolerance and suppression of the C-repeat-binding transcription factor (CBF) transcriptional pathway under freezing stress. Furthermore, the transient overexpression of CsGSTU23 in tea plants increased cold tolerance. These findings demonstrate that CsCIPK11 plays a central role in the signaling pathway to cold signals and modulates antioxidant capacity by phosphorylating CsGSTU23, leading to improved cold tolerance in tea plants.

3.
Langmuir ; 40(31): 16615-16634, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39052933

RESUMO

This study prepared new helmet-roled molecules (HMs) carrying metronidazole frameworks and a phenyl ring for strengthening adsorption and anticorrosion on mild steel. The adsorption of the HMs on the copper surface was understood by material simulation computation. Furthermore, the surface analysis experiments suggest that the studied molecules could be adsorbed to a mild steel surface through the chemical coordination bonding. The remarkable corrosion resistance of the HMs for mild steel in HCl was surveyed by potentiodynamic polarization and electrochemical impedance spectroscopy at 298 K. The HMs including two metronidazole skeletons displayed the stronger corrosion inhibition effect on mild steel than the HM1 bearing one single metronidazole part (the corrosion inhibition efficiency, HM3, 98.03%, HM2, 95.14%, HM1, 88.72%). The results presented in this study provided an efficient strategy to develop new clinical medicine-based corrosion inhibitors for metal in acid medium through molecular preconstruction.

4.
J Fungi (Basel) ; 10(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39057352

RESUMO

Tea leaf spot caused by Didymella segeticola is an important disease that threatens the healthy growth of tea plants (Camellia sinensis) and results in reductions in the productivity and quality of tea leaves. Early diagnosis of the disease is particularly important for managing the infection. Loop-mediated isothermal amplification (LAMP) assay is an efficient diagnostic technique with the advantages of simplicity, specificity, and sensitivity. In this study, we developed a rapid, visual, and high-sensitivity LAMP assay for D. segeticola detection based on sequence-characterized amplified regions. Two pairs of amplification primers (external primers F3 and B3 and internal primers FIP and BIP) were designed based on a specific sequence in D. segeticola (NCBI accession number: OR987684). Compared to common pathogens of other genera in tea plants and other species in the Didymella genus (Didymella coffeae-arabicae, Didymella pomorum, and Didymella sinensis), the LAMP method is specific for detecting the species D. segeticola. The assay was able to detect D. segeticola at a minimal concentration of 1 fg/µL genomic DNA at an optimal reaction temperature of 65 °C for 60 min. When healthy leaves were inoculated with D. segeticola in the laboratory, the LAMP method successfully detected D. segeticola in diseased tea leaves at 72 h post inoculation. The LAMP assays were negative when the DNA samples were extracted from healthy leaves. Leaf tissues with necrotic lesions from 18 germplasms of tea plants tested positive for the pathogen by the LAMP assay. In summary, this study established a specific, sensitive, and simple LAMP method to detect D. segeticola, which provides reliable technical support for estimating disease prevalence and facilitates sustainable management of tea leaf spot.

5.
Plant Physiol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875158

RESUMO

Cold stress declines the quality and yield of tea, yet the molecular basis underlying cold tolerance of tea plants (Camellia sinensis) remains largely unknown. Here, we identified a circadian rhythm component LUX ARRHYTHMO (LUX) that potentially regulates cold tolerance of tea plants through a genome-wide association study and transcriptomic analysis. The expression of CsLUX phased with sunrise and sunset and was strongly induced by cold stress. Genetic assays indicated that CsLUX is a positive regulator of freezing tolerance in tea plants. CsLUX was directly activated by CsCBF1 and repressed the expression level of CsLOX2, which regulates the cold tolerance of tea plants through dynamically modulating jasmonic acid content. Furthermore, we showed that the CsLUX-CsJAZ1 complex attenuated the physical interaction of CsJAZ1 with CsICE1, liberating CsICE1 with transcriptional activities to withstand cold stress. Notably, a single-nucleotide variation of C-to-A in the coding region of CsLUX was functionally validated as the potential elite haplotype for cold response, which provided valuable molecular markers for future cold resistance breeding in tea plants.

6.
Se Pu ; 42(4): 368-379, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566426

RESUMO

Pesticide residues may be present in olive oil because pesticides are applied to olive trees during their cultivation and growth for pest prevention and some of these pesticides are not easily degraded. Studies on pesticide residues in olive oil have mainly focused on the detection of single types of pesticide residues, and reports on the simultaneous detection of multiple pesticide residues are limited. At present, hundreds of pesticides with different polarities and chemical properties are used in practice. In this study, an analytical method based on fully automatic QuEChERS pretreatment instrument coupled with gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOF-MS) was established for the rapid determination of 222 pesticide residues in olive oil. The effects of acetonitrile acidification concentration, n-hexane volume, oscillation time, centrifugation temperature, and purification agent on the determination of the 222 pesticide residues were investigated. First, ions with good responses and no obvious interference were selected for quantification and characterization. The purification process was then developed by setting the parameters of the fully automatic QuEChERS pretreatment instrument to optimal values. The sample was extracted with acetonitrile containing 2% formic acid, and the supernatant was purified by centrifugation in a centrifuge tube containing 400 mg N-propylethylenediamine (PSA), 400 mg octadecylsilane-bonded silica gel (C18), and 1200 mg anhydrous magnesium sulfate. The purified solution was blown dry with nitrogen and then fixed with ethyl acetate for instrumental analysis. Finally, a matrix standard solution was used for quantification. The method was validated in terms of matrix effects, linear ranges, limits of detection (LODs) and quantification (LOQs), accuracies, and precisions. The results showed that 86.04% of the 222 pesticides had linear ranges of 0.02-2.00 µg/mL, 10.81% had linear ranges of 0.10-2.00 µg/mL, and 3.15% had linear ranges of 0.20-2.00 µg/mL. The pesticide residues showed good relationships within their respective linear ranges, and the correlation coefficients (R2) were greater than 0.99. The LODs of all tested pesticides ranged from 0.002 to 0.050 mg/kg, and their LOQs ranged from 0.007 to 0.167 mg/kg. Among the 222 pesticides determined, 170 pesticides had LOQs of 0.007 mg/kg while 21 pesticides had LOQs of 0.017 mg/kg. At the three spiked levels of 0.2, 0.5, and 0.8 mg/kg, 79.58% of all tested pesticides had average recoveries of 70%-120% while 65.92% had average recoveries of 80%-110%. In addition, 93.54% of all tested pesticides had relative standard deviations (RSDs, n=6)<10% while 98.35% had RSDs (n=6)<20%. The method was applied to 14 commercially available olive oil samples, and seven pesticides were detected in the range of 0.0044-0.0490 mg/kg. The residues of fenbuconazole, chlorpyrifos, and methoprene did not exceed the maximum limits stated in GB 2763-2021. The maximum residual limits of molinate, monolinuron, benalaxyl, and thiobencarb have not been established. The method utilizes the high mass resolution capability of TOF-MS, which can improve the detection throughput while ensuring good sensitivity. In addition, high-resolution and accurate mass measurements render the screening results more reliable, which is necessary for the high-throughput detection of pesticide residues. The use of a fully automatic QuEChERS instrument in the pretreatment step reduces personnel errors and labor costs, especially when a large number of samples must be processed, thereby offering significant advantages over other approaches. Moreover, the method is simple, rapid, sensitive, highly automatable, accurate, and precise. Thus, it meets requirements for the high-throughput detection of pesticide residues in olive oil and provides a reference for the development of detection methods for pesticide residues in other types of oils as well as the automatic pretreatment of complex matrices.


Assuntos
Resíduos de Praguicidas , Praguicidas , Resíduos de Praguicidas/análise , Azeite de Oliva , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Praguicidas/análise , Acetonitrilas/análise
7.
Polymers (Basel) ; 16(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675069

RESUMO

Polyether ether ketone (PEEK) is esteemed as a high-performance engineering polymer renowned for its exceptional mechanical properties and thermal stability. Nonetheless, the majority of polymer-based lubricating materials fail to meet the contemporary industrial demands for motion components regarding high speed, heavy loading, temperature resistance, and precise control. Utilizing 3D printing technology to design and fabricate intricately structured components, developing high-performance polymer self-lubricating materials becomes imperative to fulfill the stringent operational requirements of motion mechanisms. This study introduces a novel approach employing 3D printing technology to produce PEEK with varying filling densities and conducting in situ synthesis of zeolitic imidazolate framework (ZIF-8) nanomaterials on its surface to enhance PEEK's frictional performance. The research discusses the synthetic methodology, characterization techniques, and tribological performance evaluation of in situ synthesized ZIF-8 nanomaterials on PEEK surfaces. The findings demonstrate a significant enhancement in frictional performance of the composite material under low-load conditions, achieving a minimum wear rate of 4.68 × 10-6 mm3/N·m compared to the non-grafted PEEK material's wear rate of 1.091 × 10-5 mm3/N·m, an approximately 1.3 times improvement. Detailed characterization and analysis of the worn surface of the steel ring unveil the lubrication mechanism of the ZIF-8 nanoparticles, thereby presenting new prospects for the diversified applications of PEEK.

8.
Plant Mol Biol ; 114(3): 44, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630172

RESUMO

Albino tea cultivars have high economic value because their young leaves contain enhanced free amino acids that improve the quality and properties of tea. Zhonghuang 1 (ZH1) and Zhonghuang 2 (ZH2) are two such cultivars widely planted in China; however, the environmental factors and molecular mechanisms regulating their yellow-leaf phenotype remain unclear. In this study, we demonstrated that both ZH1 and ZH2 are light- and temperature-sensitive. Under natural sunlight and low-temperature conditions, their young shoots were yellow with decreased chlorophyll and an abnormal chloroplast ultrastructure. Conversely, young shoots were green with increased chlorophyll and a normal chloroplast ultrastructure under shading and high-temperature conditions. RNA-seq analysis was performed for high light and low light conditions, and pairwise comparisons identified genes exhibiting different light responses between albino and green-leaf cultivars, including transcription factors, cytochrome P450 genes, and heat shock proteins. Weighted gene coexpression network analyses of RNA-seq data identified the modules related to chlorophyll differences between cultivars. Genes involved in chloroplast biogenesis and development, light signaling, and JA biosynthesis and signaling were typically downregulated in albino cultivars, accompanied by a decrease in JA-ILE content in ZH2 during the albino period. Furthermore, we identified the hub genes that may regulate the yellow-leaf phenotype of ZH1 and ZH2, including CsGDC1, CsALB4, CsGUN4, and a TPR gene (TEA010575.1), which were related to chloroplast biogenesis. This study provides new insights into the molecular mechanisms underlying leaf color formation in albino tea cultivars.


Assuntos
Albinismo , Perfilação da Expressão Gênica , Temperatura , Temperatura Baixa , Clorofila
9.
Mol Imaging Biol ; 26(4): 693-703, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38641708

RESUMO

BACKGROUND: Previous studies have initially reported accompanying elevated 2-deoxy-2[18F]fluoro-D-glucose ([18F]F-FDG) inflammatory activity in the remote area and its prognostic value after acute myocardial infarction (AMI). Non-invasive characterization of the accompanying inflammation in the remote myocardium may be of potency in guiding future targeted theranostics. [68Ga]Ga-Pentixafor targeting chemokine receptor 4 (CXCR4) on the surface of inflammatory cells is currently one of the promising inflammatory imaging agents. In this study, we sought to focus on the longitudinal evolution of [68Ga]Ga-Pentixafor activities in the remote myocardium following AMI and its association with cardiac function. METHODS: Twelve AMI rats and six Sham rats serially underwent [68Ga]Ga-Pentixafor imaging at pre-operation, and 5, 7, 14 days post-operation. Maximum and mean standard uptake value (SUV) and target-to-background ratio (TBR) were assessed to indicate the uptake intensity. Gated [18F]F-FDG imaging and immunofluorescent staining were performed to obtain cardiac function and responses of pro-inflammatory and reparative macrophages, respectively. RESULTS: The uptake of [68Ga]Ga-Pentixafor in the infarcted myocardium peaked at day 5 (all P = 0.003), retained at day 7 (all P = 0.011), and recovered at day 14 after AMI (P > 0.05), paralleling with the rise-fall pro-inflammatory M1 macrophages (P < 0.05). Correlated with the peak activity in the infarct territory, [68Ga]Ga-Pentixafor uptake in the remote myocardium on day 5 early after AMI significantly increased (AMI vs. Sham: SUVmean, SUVmax, and TBRmean: all P < 0.05), and strongly correlated with contemporaneous EDV and/or ESV (SUVmean and TBRmean: both P < 0.05). The transitory remote activity recovered as of day 7 post-AMI (AMI vs. Sham: P > 0.05). CONCLUSIONS: Corresponding with the peaked [68Ga]Ga-Pentixafor activity in the infarcted myocardium, the activity in the remote region elevated accordingly and led to contemporaneous left ventricular remodelling early after AMI. Further studies are warranted to clarify its clinical application potential.


Assuntos
Infarto do Miocárdio , Miocárdio , Remodelação Ventricular , Animais , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Remodelação Ventricular/efeitos dos fármacos , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Ratos Sprague-Dawley , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Ratos , Tomografia por Emissão de Pósitrons
10.
Anal Biochem ; 690: 115491, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38460901

RESUMO

Bioactive peptides can hinder oxidative processes and microbial spoilage in foodstuffs and play important roles in treating diverse diseases and disorders. While most of the methods focus on single-functional bioactive peptides and have obtained promising prediction performance, it is still a significant challenge to accurately detect complex and diverse functions simultaneously with the quick increase of multi-functional bioactive peptides. In contrast to previous research on multi-functional bioactive peptide prediction based solely on sequence, we propose a novel multimodal dual-branch (MMDB) lightweight deep learning model that designs two different branches to effectively capture the complementary information of peptide sequence and structural properties. Specifically, a multi-scale dilated convolution with Bi-LSTM branch is presented to effectively model the different scales sequence properties of peptides while a multi-layer convolution branch is proposed to capture structural information. To the best of our knowledge, this is the first effective extraction of peptide sequence features using multi-scale dilated convolution without parameter increase. Multimodal features from both branches are integrated via a fully connected layer for multi-label classification. Compared to state-of-the-art methods, our MMDB model exhibits competitive results across metrics, with a 9.1% Coverage increase and 5.3% and 3.5% improvements in Precision and Accuracy, respectively.

11.
Plant Physiol Biochem ; 207: 108341, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38266557

RESUMO

Low temperature is one of the most important environmental factors limiting tea plants' geographic distribution and severely affects spring tea's yield and quality. Circadian components contribute to plant responses to low temperatures; however, comparatively little is known about these components in tea plants. In this study, we identified a core clock component the LATE ELONGATED HYPOCOTYL, CsLHY, which is mainly expressed in tea plants' mature leaves, flowers, and roots. Notably, CsLHY maintained its circadian rhythmicity of expression in summer, but was disrupted in winter and held a high expression level. Meanwhile, we found that CsLHY expression rhythm was not affected by different photoperiods but was quickly broken by cold, and the low temperature induced and kept CsLHY expression at a relatively high level. Yeast one-hybrid and dual-luciferase assays confirmed that CsLHY can bind to the promoter of Sugars Will Eventually be Exported Transporters 17 (CsSWEET17) and function as a transcriptional activator. Furthermore, suppression of CsLHY expression in tea leaves not only reduced CsSWEET17 expression but also impaired the freezing tolerance of leaves compared to the control. Our results demonstrate that CsLHY plays a positive role in the low-temperature response of tea plants by regulating CsSWEET17 when considered together.


Assuntos
Camellia sinensis , Temperatura Baixa , Fatores de Transcrição/metabolismo , Camellia sinensis/metabolismo , Ritmo Circadiano , Chá , Regulação da Expressão Gênica de Plantas
12.
Opt Express ; 32(1): 1003-1009, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175106

RESUMO

We demonstrate a thermoreflectance-based thermometry technique with an ultimate temperature resolution of 60 µK in a 2.6 mHz bandwidth. This temperature resolution was achieved using a 532 nm-wavelength probe laser and a ∼1 µm-thick silicon transducer film with a thermoreflectance coefficient of -4.7 × 10-3 K-1 at room temperature. The thermoreflectance sensitivity reported here is over an order-of-magnitude greater than that of metal transducers, and is comparable to the sensitivity of traditional resistance thermometers. Supporting calculations reveal that the enhancement in sensitivity is due to optical interference in the thin film.

13.
RSC Adv ; 14(4): 2673-2677, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38226147

RESUMO

A ß-naphthol library has been efficiently constructed utilizing a mild continuous flow procedure, relying on a tandem Friedel-Crafts reaction and starting from readily available arylacetyl chloride and alkynes. Multiple functionalized ß-naphthols can be acquired within 160 s in generally high yields (up to 83%). Using an electron-rich phenylacetyl chloride derivative (4-OH- or 4-MeO-) provides spirofused triene dione as the primary product. A scale-up preparation affords a throughput of 4.70 g h-1, indicating potential large-scale application. Herein, we present a rapid, reliable, and scalable method to obtain various ß-naphthols in the compound library.

14.
Food Chem ; 441: 138341, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38176147

RESUMO

The key components dominating the quality of green tea and black tea are still unclear. Here, we respectively produced green and black teas in March and June, and investigated the correlations between sensory quality and chemical compositions of dry teas by multivariate statistics, bioinformatics and artificial intelligence algorithm. The key chemical indices were screened out to establish tea sensory quality-prediction models based on the result of OPLS-DA and random forest, namely 4 flavonol glycosides of green tea and 8 indices of black tea (4 pigments, epigallocatechin, kaempferol-3-O-rhamnosyl-glucoside, ratios of caffeine/total catechins and epi/non-epi catechins). Compared with OPLS-DA and random forest, the support vector machine model had good sensory quality-prediction performance for both green tea and black tea (F1-score > 0.92), even based on the indices of fresh tea leaves. Our study explores the potential of artificial intelligence algorithm in classification and prediction of tea products with different sensory quality.


Assuntos
Camellia sinensis , Catequina , Chá/química , Inteligência Artificial , Cafeína/análise , Camellia sinensis/química , Catequina/análise , Algoritmos
15.
Physiol Plant ; 175(6): e14064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148243

RESUMO

Green tea made from albino buds and leaves has a strong umami taste and aroma. The cultivar 'Zhonghuang 2' (ZH2, Camellia sinensis) is a natural mutant with young shoots that are yellow in spring and green or yellow-green in summer. However, the mechanism of leaf color change remains unclear. Here, we found that young shoots of ZH2 were yellow at low temperature (LT) and green at high temperature (HT), indicating that ZH2 is a temperature-sensitive cultivar. Transmission electron microscopy analysis showed that the grana in the chloroplasts of young shoots grown at LT were poorly stacked, which caused a lack of photoreactions and chlorophyll. RNA-seq results showed 1279 genes differentially expressed in the young shoots grown at LT compared with those at HT, including genes related to cytochrome synthesis, chloroplast development, photosynthesis, and DNA methylation. A whole-genome bisulfite sequencing assay revealed that the dynamics of DNA methylation levels in the CG, CHG, and CHH contexts decreased under LT, and the change was most obvious in the CHH context. Furthermore, 72 genes showed significant changes in both expression and DNA methylation levels, and most of them were related to cytochrome synthesis, chloroplast development, photosynthesis, transcription factors, and signaling pathways. These results demonstrate that DNA methylation is involved in the LT-regulated albino processes of ZH2. Changes in DNA methylation levels were associated with changes in gene expression levels, affecting the structure and function of chloroplasts, which may have a phenotypic impact on shoot and leaf color.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Transcriptoma/genética , Temperatura , Clorofila/metabolismo , Citocromos/análise , Citocromos/genética , Citocromos/metabolismo , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...