Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 5707-5718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882540

RESUMO

Background: Rheumatoid Arthritis (RA) involves prolonged inflammation of the synovium, damaging joints and causing stiffness and deformity. Celastrol (Cel), derived from the Chinese herbal medicine Tripterygium wilfordii Hook F, offers immunosuppressive effects for RA treatment but is limited by poor solubility and bioavailability. Purpose: In this study, long-circulating Cel-loaded liposomes (Cel-LPs) were used to increase the pharmacokinetics of Cel, thereby improving drug delivery and efficacy for the treatment of RA. Methods: Cel-LPs were prepared and administered orally and intravenously to compare the elimination half-life of drugs and bioavailability of Cel. Cel-LPs were prepared using the lipid thin-layer-hydration-extrusion method. Human rheumatoid arthritis synovial (MH7A) cells were used to investigate the compatibility of Cel-LPs. The pharmacokinetic studies were performed on male Sprague-Dawley (SD) rats. Results: The Cel-LPs had an average size of 72.20 ± 27.99 nm, a PDI of 0.267, a zeta potential of -31.60 ± 6.81 mV, 78.77 ± 5.69% drug entrapment efficiency and sustained release (5.83 ± 0.42% drug loading). The cytotoxicity test showed that liposomes had excellent biocompatibility and the fluorescence microscope diagram indicated that liposome entrapment increased intracellular accumulation of Rhodamine B by MH7A cells. Furthermore, the results exhibited that Cel-LPs improved the pharmacokinetics of Cel by increasing the elimination half-life (t1/2) to 11.71 hr, mean residence time (MRT(0-∞)) to 7.98 hr and apparent volume of distribution (Vz/F) to 44.63 L/kg in rats, compared to the Cel solution. Conclusion: In this study, liposomes were demonstrated to be effective in optimizing the delivery of Cel, enabling the formulation of Cel-LPs with prolonged blood circulation and sustained release characteristics. This formulation enhanced the intravenous solubility and bioavailability of Cel, developing a foundation for its clinical application in RA and providing insights on poorly soluble drug management.


Assuntos
Lipossomos , Triterpenos Pentacíclicos , Ratos Sprague-Dawley , Triterpenos , Triterpenos Pentacíclicos/farmacocinética , Triterpenos Pentacíclicos/administração & dosagem , Animais , Lipossomos/química , Lipossomos/farmacocinética , Triterpenos/farmacocinética , Triterpenos/química , Triterpenos/administração & dosagem , Masculino , Humanos , Administração Intravenosa , Ratos , Disponibilidade Biológica , Linhagem Celular , Artrite Reumatoide/tratamento farmacológico , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos
2.
Int Immunopharmacol ; 131: 111822, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38503010

RESUMO

Previous study has indicated that Celastrol (Cel) has various physiological and pharmacological effects, including antibacterial, antioxidant, pro-apoptotic, anticancer and anti-rheumatoid arthritis (RA) effects. However, low water solubility, low oral bioavailability, narrow treatment window, and high incidence of systemic adverse reactions still limit the further clinical application of Cel. Here, aiming at effectively overcome those shortcomings of Cel to boost its beneficial effects for treating RA, we developed the leukosome (LEUKO) coated biomimetic nanoparticles (NPs) for the targeted delivery of Cel to arthritis injury area in RA. LEUKO were synthesized using membrane proteins purified from activated J774 macrophage. LEUKO and Cel-loaded LEUKO (Cel@LEUKO) were characterized using dynamic light scattering and transmission electron microscopy. Our results demonstrated that Cel@LEUKO can inhibit the inflammatory response of lipopolysaccharide (LPS) induced mouse monocyte macrophage leukemia cells (RAW264.7 cells) and human rheumatoid arthritis synovial fibroblasts (MH7A) cells through the inhibition of reactive oxygen species (ROS)-NF-κB pathway. In addition, research has shown that LEUKO effectively targets and transports Cel to the inflammatory site of RA, increased drug concentration in affected areas, reduced systemic toxicity of Cel, and reduced clinical symptoms, inflammatory infiltration, bone erosion, and serum inflammatory factors in collagen-induced arthritis (CIA) rats.


Assuntos
Artrite Experimental , Artrite Reumatoide , Nanopartículas , Triterpenos Pentacíclicos , Camundongos , Ratos , Humanos , Animais , NF-kappa B , Inflamassomos , Espécies Reativas de Oxigênio , Biomimética , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Experimental/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...