Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 825
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39093066

RESUMO

OBJECTIVE: In this study, we developed an exercise training protocol for assessing both blood pressure dynamics and mRNA expression levels of purine receptors in various vascular tissues during physical activity. The objective is to assess the impact of exercise training on blood pressure regulation in spontaneously hypertensive rats (SHR) and purine receptors in vascular tissues. METHODS: Wistar Kyoto (WKY) and SHR rats were randomly allocated into sedentary (Sed) and exercise training (ExT) groups. Rats in the Sed groups were allowed unrestricted movement, whereas those in the ExT groups underwent a 16-week regimen of low- to moderate-intensity treadmill exercise. Throughout the intervention period, blood pressure measurements and body weight recordings were conducted. Additionally, mRNA expressions of purine receptors P2X1, P2Y1, and P2Y2 in renal artery (RA), internal carotid artery (Int), thoracic aorta (Aor), and caudal artery (Cau) tissues were assessed. RESULTS: In the Sed group, body weight of SHR rats was observed to be lower compared to the three other groups. Over the course of the exercise regimen, blood pressure in the ExT group of SHR rats reduced gradually, converging towards levels similar to those observed in WKY rats by the conclusion of the exercise period. Regarding mRNA expression patterns of P2X1 receptors across the four blood vessels, WKY and SHR rats demonstrated similar sequences, consistently displaying the highest expression levels in the Cau. Conversely, mRNA expressions of P2Y1 and P2Y2 receptors exhibited distinct sequences across the four blood vessels in both WKY and SHR rats. Notably, compared to the Sed group of WKY rats, mRNA expression of P2X1 receptor in the Int of SHR rats revealed an increase, while expressions in the Aor of WKY rats and the Cau of SHR rats decreased following exercise. Expression of P2Y1 receptor mRNA decreased across all four types of blood vessels in SHR rats. Post-exercise, P2Y1 receptor mRNA expression increased in the Aor, decreased in the Cau of WKY rats, and increased in the Int and renal artery (RA) of SHR rats. Conversely, expressions of P2Y2 receptor mRNA decreased in the Int and Aor of SHR rats. Except for the Aor of WKY rats, expressions of P2Y2 receptor mRNA increased in the other arteries of both rat types following exercise. CONCLUSION: Differences in the distribution of purine receptor subtypes among distinct arterial segments in both WKY and SHR rats were observed. Exercise training was found to enhance mRNA expression levels of P2Y receptors in these rat models. This finding implies that exercise training might reduce hypertension in SHR rats by bolstering the purinergic relaxation response.

2.
Int J Biol Macromol ; 277(Pt 3): 134456, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098697

RESUMO

To ensure the sustainable development of the nuclear industry, the effective capture of radioiodine from nuclear wastewater has attracted much attention. Herein, a novel MIL-88A(Al)/chitosan/graphene oxide (MCG) composite aerogel was prepared by using crosslinked chitosan and graphene oxide as the 3D network skeleton, and MIL-88A(Al) nanocrystalline particles were introduced into the skeleton by freeze-drying method. MIL-88A(Al) adsorption capacities for volatile and soluble iodine were 2.02 g g-1 and 850.00 mg g-1, respectively. Owing to the synergistic effect of MIL-88A(Al), GO, CS, and the hierarchically porous structures of the MCG aerogel, the adsorption capacities for volatile and soluble iodine by the MCG aerogel were increased to 2.62 g g-1 and 1072.60 mg g-1, respectively. Furthermore, the adsorption performance of the MCG aerogel for volatile and soluble iodine could be maintained at 83 % and 82 % after 5 cycles, suggesting excellent recoverability. Meanwhile, the adsorption mechanism studies showed the interactions between iodine and NH, AlO, and CO in MCG aerogel. Furthermore, the adsorption process is consistent with the Elovich kinetic and Sips isotherm models. MCG aerogels are potential candidates for enhanced radioiodine adsorption due to their high radioiodine capture performance and excellent recyclability.

3.
Comput Biol Med ; 180: 108990, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39126788

RESUMO

Segmentation in medical images is inherently ambiguous. It is crucial to capture the uncertainty in lesion segmentations to assist cancer diagnosis and further interventions. Recent works have made great progress in generating multiple plausible segmentation results as diversified references to account for the uncertainty in lesion segmentations. However, the efficiency of existing models is limited, and the uncertainty information lying in multi-annotated datasets remains to be fully utilized. In this study, we propose a series of methods to corporately deal with the above limitation and leverage the abundant information in multi-annotated datasets: (1) Customized T-time Inner Sampling Network to promote the modeling flexibility and efficiently generate samples matching the ground-truth distribution of a number of annotators; (2) Uncertainty Degree defined for quantitatively measuring the uncertainty of each sample and the imbalance of the whole multi-annotated dataset from a brand new perspective; (3) Uncertainty-aware Data Augmentation Strategy to help probabilistic models adaptively fit samples with different ranges of uncertainty. We have evaluated each of them on both the publicly available lung nodule dataset and our in-house Liver Tumor dataset. Results show that our proposed methods achieves the overall best performance on both accuracy and efficiency, demonstrating its great potential in lesion segmentations and more downstream tasks in real clinical scenarios.

4.
BMC Cardiovasc Disord ; 24(1): 426, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143461

RESUMO

BACKGROUND: Owing to a lack of data, this study aimed to explore the effect of cardiac preload on myocardial strain in patients with sepsis. METHODS: A total of 70 patients with sepsis in intensive care unit (ICU) of a tertiary teaching hospital in China from January 2018 to July 2019 and underwent transthoracic echocardiography were enrolled. Echocardiographic data were recorded at ICU admission and 24 h later. Patients were assigned to low left ventricular end-diastolic volume index (LVEDVI) and normal LVEDVI groups. We assessed the impact of preload on myocardial strain between the groups and analyzed the correlation of echocardiographic parameters under different preload conditions. RESULTS: Thirty-seven patients (53%) had a low LVEDVI and 33 (47%) a normal LVEDVI. Those in the low LVEDVI group had a faster heart rate (121.7 vs. 95.3, p < 0.001) and required a greater degree of fluid infusion (3.67 L vs. 2.62 L, P = 0.019). The left ventricular global strain (LVGLS) (-8.60% vs. -10.80%, p = 0.001), left ventricular global circumferential strain (LVGCS) (-13.83% vs. -18.26%, p = 0.006), and right ventricular global longitudinal strain (RVGLS) (-6.9% vs. -10.60%, p = 0.001) showed significant improvements in the low LVEDVI group after fluid resuscitation. However, fluid resuscitation resulted in a significantly increased cardiac afterload value (1172.00 vs. 1487.00, p = 0.009) only in the normal LVEDVI group. Multivariate backward linear regression showed that LVEDVI changes were independently associated with myocardial strain-related improvements during fluid resuscitation. The baseline LVEDVI was significantly negatively correlated with the LVGLS and RVGLS (r = -0.44 and - 0.39, respectively) but not LVGCS. LVEDVI increases during fluid resuscitation were associated with improvements in the myocardial strain degree. CONCLUSIONS: Myocardial strain alterations were significantly influenced by the cardiac preload during fluid resuscitation in sepsis.


Assuntos
Sepse , Função Ventricular Esquerda , Humanos , Masculino , Sepse/fisiopatologia , Sepse/terapia , Sepse/diagnóstico , Sepse/complicações , Pessoa de Meia-Idade , Feminino , Idoso , Hidratação , Fatores de Tempo , Volume Sistólico , China , Contração Miocárdica , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/terapia , Disfunção Ventricular Esquerda/diagnóstico , Valor Preditivo dos Testes , Ecocardiografia
5.
Small ; : e2403852, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046073

RESUMO

N-type PbSe thermoelectric materials encounter challenges in improving the power factor due to the single-band structure near the Fermi level, which obstructs typical band convergence. The primary strategy for enhancing the thermoelectric figure of merit (ZT) for n-type PbSe involves reducing lattice thermal conductivity (κlat) by introducing various defect structures. However, lattice mismatches resulting from internal defects within the matrix can diminish carrier mobility, thereby affecting electrical transport properties. In this study, n-type AgCuTe-alloyed PbSe systems achieve a peak ZT value of ≈1.5 at 773 K. Transmission electron microscopy reveals nanoprecipitates of Ag2Te, the room temperature second phase of AgCuTe, within the PbSe matrix. Meanwhile, a unique semi-coherent phase boundary is observed between the PbSe matrix and the Ag2Te nanoprecipitates. This semi-coherent phase interface effectively scatters low-frequency phonons while minimizing damage to carrier mobility. Additionally, the dynamic doping effect of Cu atoms from the decomposition of AgCuTe within the matrix further optimize the high-temperature thermoelectric performance. Overall, these factors significantly enhance the ZT across the whole temperature range. The ZT value of ≈1.5 indicates high competitiveness compared to the latest reported n-type PbSe materials, suggesting that these findings hold promise for advancing the development of efficient thermoelectric systems.

6.
Heliyon ; 10(13): e33555, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39044970

RESUMO

Aiming at the problems that the traditional image recognition technology is challenging to extract useful features and the recognition time is extended; the AlexNet model is improved to improve the effect of image classification and recognition. This study focuses on 8 types of tomato leaf diseases and healthy leaves. By using HOG and LBP weighted fusion to extract image features, a tomato leaf disease recognition model based on the AlexNet model is proposed, and transfer learning is used to train the AlexNet model. Transfer the knowledge learned by the AlexNet model on the PlantVillage image dataset to this model while reducing the number of fully connected layers. Keras deep learning framework and programming language Python were used. The model was implemented, and the classification and identification of tomato leaf diseases were carried out. The recognition rate of feature-weighted fusion classification is higher than that of serial and parallel methods, and the recognition time is the shortest. When the weight coefficient ratio of HOG and LBP is 3:7, the image recognition rate is the highest, and its value is 97.2 %. From the model performance curve See, when the number of iterations is more than 150 times, the training set and test accuracy rate both exceed 97 %, the loss rate shows a gradient decline, and the change is relatively stable; compared with the traditional AlexNet model, HOG + LBP + SVM model, and VGG model, improved AlexNet model has the highest recognition rate, and it has high recall value, accuracy, and F1 value; Compared with the latest convolutional neural network disease recognition models, improved AlexNet model recognition accuracy was 98.83 %, and the F1 value was 0.994. It shows that the model has good convergence performance, fast prediction speed, and low loss rate and can effectively identify 8 types of tomato leaf images, which provides a reference for the research on crop disease identification.

7.
Nanotechnology ; 35(41)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38991518

RESUMO

Physical implementations of reservoir computing (RC) based on the emerging memristors have become promising candidates of unconventional computing paradigms. Traditionally, sequential approaches by time-multiplexing volatile memristors have been prevalent because of their low hardware overhead. However, they suffer from the problem of speed degradation and fall short of capturing the spatial relationship between the time-domain inputs. Here, we explore a new avenue for RC using memristor crossbar arrays with device-to-device variations, which serve as physical random weight matrices of the reservoir layers, enabling faster computation thanks to the parallelism of matrix-vector multiplication as an intensive operation in RC. To achieve this new RC architecture, ultralow-current, self-selective memristors are fabricated and integrated without the need of transistors, showing greater potential of high scalability and three-dimensional integrability compared to the previous realizations. The information processing ability of our RC system is demonstrated in asks of recognizing digit images and waveforms. This work indicates that the 'nonidealities' of the emerging memristor devices and circuits are a useful source of inspiration for new computing paradigms.

8.
Sci Total Environ ; 948: 174899, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39043299

RESUMO

Biodegradable mulch residues contribute significantly to the presence of microplastics in soil ecosystems. The environmental impact of microplastics, especially biodegradable microplastics (bio-MPs), on soil and plants is of increasing concern. In this study, the responses of five crop species potted in soil treated with different mass concentrations of bio-MPs were assessed for one month. The shoot and root biomasses of cabbages and strawberries were inhibited by bio-MPs treatment. There was little variation in the growth indicators of identical plants with the addition of different mass concentrations of bio-MPs; however, a significant difference was observed among different plants with the addition of the same concentration of bio-MPs. The detrimental effects of bio-MPs were more pronounced in strawberries and cabbages than in the other plant species. Moreover, bio-MPs can affect the availability of soil nutrients and enzyme activities. Structural equation modeling showed that changes in soil properties may indirectly affect plant growth and nutrient uptake when exposed to bio-MPs. This study provides a theoretical basis for understanding the ecological effects of biodegradable mulch films.


Assuntos
Biodegradação Ambiental , Microplásticos , Poluentes do Solo , Solo , Solo/química , Microplásticos/toxicidade , Desenvolvimento Vegetal/efeitos dos fármacos , Plásticos Biodegradáveis , Plantas/efeitos dos fármacos
9.
Phys Med Biol ; 69(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39019059

RESUMO

Objective.Radiation-induced acoustic (RA) computed tomographic (RACT) imaging is being thoroughly explored for radiation dosimetry. It is essential to understand how key machine parameters like beam pulse, size, and energy deposition affect image quality in RACT. We investigate the intricate interplay of these parameters and how these factors influence dose map resolution in RACT.Approach.We first conduct an analytical assessment of time-domain RA signals and their corresponding frequency spectra for certain testcases, and computationally validate these analyses. Subsequently, we simulated a series of x-ray-based RACT (XACT) experiments and compared the simulations with experimental measurements.In-silicoreconstruction studies have also been conducted to demonstrate the resolution limits imposed by the temporal pulse profiles on RACT. XACT experiments were performed using clinical machines and the reconstructions were analyzed for resolution capabilities.Main results.Our paper establishes the theory for predicting the time- and frequency-domain behavior of RA signals. We illustrate that the frequency content of RA signal is not solely dependent on the spatial energy deposition characteristics but also on the temporal features of radiation. The same spatial energy deposition through a Gaussian pulse and a rectangular pulse of equal pulsewidths results in different frequency spectra of the RA signals. RA signals corresponding to the rectangular pulse exhibit more high-frequency content than their Gaussian pulse counterparts and hence provide better resolution in the reconstructions. XACT experiments with ∼3.2 us and ∼4 us rectangular radiation pulses were performed, and the reconstruction results were found to correlate well with thein-silicoresults.Significance.Here, we discuss the inherent resolution limits for RACT-based radiation dosimetric systems. While our study is relevant to the broader community engaged in research on photoacoustics, x-ray-acoustics, and proto/ionoacoustics, it holds particular significance for medical physics researchers aiming to set up RACT for dosimetry and radiography using clinical radiation machines.


Assuntos
Acústica , Radiometria , Radiometria/métodos , Humanos , Tomografia Computadorizada por Raios X
10.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062755

RESUMO

Opsins are a class of transmembrane proteins encoded by opsin genes, and they play a variety of functional roles. Short wavelength-sensitive opsin 2 (sws2), one of the five classes of visual opsin genes, mainly senses blue light. Previous research has indicated that sws2 is essential for melanocyte formation in fish; however, its specific role in skin color differentiation remains to be elucidated. Here, we identified the sws2 gene in a prized reef-dwelling fish, Plectropomus leopardus. The full-length P. leopardus sws2 gene encodes a protein consisting of 351 amino acids, and exhibits substantial homology with other fish species. The expression of the sws2 gene was widespread across P. leopardus tissues, with high expression in eye and skin tissues. Through immunohistochemistry and in situ hybridization analyses, we discovered that the sws2 gene was primarily localized in the rod and cone cells of the retina, and epidermal cells of the skin. Furthermore, dsRNA interference was used for sws2 gene knockdown in living P. leopardus to elucidate its function in skin color differentiation. Black-color-related genes, melanin contents, and tyrosinase activity in the skin significantly decreased after sws2 knockdown (p < 0.05), but red-color-related genes and carotenoid and lutein contents significantly increased (p < 0.05). Retinoic acid injection produced the opposite results. Our results suggested that the sws2 gene influences P. leopardus skin color regulation by affecting vitamin synthesis and melanin-related gene expression levels. This study establishes a foundation for elucidating the molecular mechanisms by which sws2 regulates melanocyte formation in fish skin.


Assuntos
Melaninas , Pele , Tretinoína , Animais , Melaninas/biossíntese , Melaninas/metabolismo , Tretinoína/metabolismo , Pele/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Pigmentação da Pele/genética , Opsinas/metabolismo , Opsinas/genética , Regulação da Expressão Gênica
11.
J Colloid Interface Sci ; 675: 263-274, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38970912

RESUMO

The removal of dye molecules in alkaline environments is an issue that should receive increased attention. In this study, the interaction mechanism between polydopamine-modified multiwalled carbon nanotubes (P-MWCNTs) and multiwalled carbon nanotubes (MWCNTs) with the cationic dye methylene blue (MB) in alkaline environments was explained in depth by adsorption, spectroscopy, and density functional theory (DFT). The mechanism of action and dominant forces between the adsorbent and adsorbate were analyzed graphically by introducing energy decomposition analysis (EDA) and an independent gradient model (IGM) into the DFT calculations. In addition, the force distribution was investigated through an isosurface. Moreover, batch adsorption studies were conducted to evaluate the performance of MWCNTs and P-MWCNTs for MB removal in alkaline environments. The maximum MB adsorption capacities of the MWCNTs and P-MWCNTs in solution were 113.3 mg‧g-1 and 230.4 mg‧g-1, respectively, at pH 9. The IGM and EDA showed that the better adsorption capacity of the P-MWCNTs originated from the enhancement of the electrostatic effect by the proton dissociation of polydopamine. Moreover, the adsorption of MB by MWCNTs and P-MWCNTs in alkaline environments was governed by dispersion and electrostatic effects, respectively. Through this study, it is hoped that progress will be made in the use of DFT to explore the mechanism of adsorbent-adsorbate interactions.

12.
Semin Oncol Nurs ; : 151690, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971689

RESUMO

OBJECTIVES: It is not clear how chemotherapy-related cognitive impairment and self-care ability affect the quality of life of women with breast cancer. The purpose of this study was to explore the relationships between chemotherapy-related cognitive impairment, self-care ability, and quality of life in breast cancer patients, and test whether self-care ability plays a mediating role in the association between cognitive impairment and quality of life. METHODS: This study was a cross-sectional study, conducted in China in 2022. Self-reported scales were used to assess cognitive function, self-care ability, and quality of life. Data were analyzed using descriptive statistics, spearman correlation analysis and hierarchical multiple regression analyses, the SPSS Process program was used to explore the mediating effect of self-care ability. RESULTS: A total of 218 participants were investigated, and approximately 79.3% of patients experienced mild chemotherapy-related cognitive impairment, the mean quality of life score was 59.96 ± 14.15, and the mean self-care ability score was 107.4 ± 24.09. Significant correlations among cognitive impairment, self-care ability, and quality of life were observed (P < .05). Additionally, self-care ability played a partial mediating role between cognitive impairment and quality of life (P < .05), accounting for 24.3% and 22.3%, respectively. CONCLUSIONS: Chemotherapy-related cognitive impairment and self-care ability are factors affecting the quality of life of breast cancer survivors. Self-care ability mediates the relationship between cognitive impairment and quality of life. Enhancing patients' self-care ability can improve the quality of life of patients with cognitive impairment. IMPLICATIONS FOR NURSING PRACTICE: In the future, oncology nurses should not only pay attention to the severity of cognitive impairment, but also assess the level of patients' self-care ability, provide relevant medical and healthcare guidance, train self-management behavior and strengthen self-care ability by integrating multidisciplinary forces to improve the quality of life of breast cancer patients effectively.

13.
Int J Biol Macromol ; 274(Pt 1): 133552, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39025747

RESUMO

In this study, a new method for preparing gels suitable for 3D printing of food structures using wheat starch and plasma activated water (PAW) is presented. The investigation focused on the effect of PAW on starch pasting and the final 3D printed product. It was found that the use of PAW for 15 min in the preparation of wheat starch gels optimized carrier stability and improved height retention in the printed constructs, showing significant shape retention even after prolonged storage. This durability can be attributed to the hindrance of polymerization between starch molecules and the promotion of intermolecular starch polymerization when reactive groups and ions are integrated into the starch structure. The incorporation of PAW with soluble reactive groups, ions and acidity not only accelerates the breakdown of the starch molecules but also facilitates additional hydrogen bonding within the double helix, which strengthens the structure of the gel. This interaction accelerates the retrogradation of the starch, thereby enhancing its overall stability. This study provides a new green approach to modify the 3D printing properties of starch gels.


Assuntos
Géis , Impressão Tridimensional , Amido , Triticum , Água , Triticum/química , Amido/química , Água/química , Géis/química , Ligação de Hidrogênio
15.
Sci Total Environ ; 949: 175002, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39053529

RESUMO

Groundwater contamination by nitrates presents significant risks to both human health and the environment. In groundwater characterized as oligotrophic-low in organic carbon, but abundant in carbonate and phosphate-chemolithoautotrophic bacteria, including nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB), play a vital role in denitrification. The chemoautotrophic nitrate reduction is sensitive to environmental factors, including widespread iron oxides like hematite in nature. However, the specific mechanisms of this influence remain unclear. We examined the mechanism of how hematite impacts autotrophic nitrate reduction in a model NRFeOB community known as culture KS. We found that hematite enhances the rate of autotrophic nitrate reduction by promoting Fe(II) oxidation. Mössbauer spectroscopy detected a significant amount of adsorbed Fe(II) when hematite was present, leading to a reduction in dissolved ferrous iron. In conjunction with XRD data, it can be inferred that the formation of vivianite decreased, thereby increasing the Fe(II) activity in the reaction system. Within the culture KS bacterial consortium, hematite fosters the proliferation of autotrophic microorganisms, specifically Gallionellaceae, and amplifies the presence of denitrifying microbes, notably Rhodanobacter. This dual enhancement improves Fe(II) utilization and nitrate reduction capabilities. Our findings highlight intricate interactions between hematite and a model NRFeOB community, offering insights into groundwater nitrate removal mechanisms and the ecological strategies of autotrophic bacteria in mineral-rich environments.


Assuntos
Processos Autotróficos , Compostos Férricos , Água Subterrânea , Nitratos , Fosfatos , Compostos Férricos/metabolismo , Água Subterrânea/química , Água Subterrânea/microbiologia , Fosfatos/metabolismo , Carbonatos , Desnitrificação , Poluentes Químicos da Água/metabolismo , Oxirredução , Ferro/metabolismo , Bactérias/metabolismo , Compostos Ferrosos/metabolismo
16.
Domest Anim Endocrinol ; 89: 106870, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38954983

RESUMO

The liver and intestine play a critical role in nutrient absorption, storage, and metabolism. The aim of this study was to evaluate expression pattern of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of the rapamycin (mTOR) signaling pathway that included PI3K, AKT1, mTOR, FoxO1, SREBP-1, PPARα, PTEN and FXR in the maternal liver and duodenum. Ovine livers and duodenums were sampled at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation, and RT-qPCR, western blot and immunohistochemistry analysis were used to detect mRNA and protein expression. The results showed that expression of PI3K, AKT1, p-mTOR, FoxO1, SREBP-1 and PTEN upregulated in the maternal liver, and PPARα upregulated in the duodenum. However, expression of FoxO1, SREBP-1 and PTEN in the duodenum downregulated during early pregnancy. In addition, expression levels of SREBP-1, PTEN and PPARα in the maternal liver, and PI3K in the duodenum peaked at day 13 of pregnancy. In addition, expression levels of PI3K, p-mTOR and FoxO1 in the liver, and AKT1 and p-mTOR in the duodenum peaked at day 16 of pregnancy. Nevertheless, expression levels of FXR both in the maternal liver duodenum downregulated at days 13 and 16 of pregnancy. In conclusion, early pregnancy regulated expression pattern of PI3K/AKT/mTOR signaling pathway in the ovine liver and duodenum in a pregnancy stage-specific and tissue-specific manner, which may be necessary for the adaptations in maternal hepatic nutrient metabolism and intestinal nutrient absorption early pregnancy.

17.
Int J Pharm ; 661: 124385, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38925237

RESUMO

Curcumin, a polyphenol extracted from turmeric, is a potential alternative for the treatment of oral squamous cell carcinoma (OSCC) due to its remarkable anticancer activity and low systemic toxicity. To further enhance the anticancer activity and bioavailability of curcumin, we synthesized a curcumin analogue, AC17, by modifying the benzene ring and methylene group of curcumin. A soluble hyaluronic acid microneedle patch (AC17@HAMN) was developed to ensure accurate and safe delivery of AC17 to tumor tissues. The inhibitory effect of AC17 on OSCC cells was stronger than that of curcumin and some common analogues. Transcriptome sequencing showed that the target genes of AC17 were mainly concentrated in apoptosis, cell cycle and cell senescence pathways. Among them, AC17 induces cell cycle arrest and inhibits cell proliferation mainly by activating FOXO3 signaling. With good penetration and dissolution properties, microneedles can deliver AC17 directly to the tumor site and show good anti-tumor effect. Moreover, AC17@HAMN showed good biosafety. In summary, AC17@HAMN offers high efficiency, minimal invasiveness, and few adverse reactions. This microneedle patch holds great promise for potential clinical applications, especially for the treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas , Curcumina , Sistemas de Liberação de Medicamentos , Proteína Forkhead Box O3 , Neoplasias Bucais , Agulhas , Curcumina/administração & dosagem , Curcumina/farmacologia , Curcumina/farmacocinética , Curcumina/química , Neoplasias Bucais/tratamento farmacológico , Humanos , Animais , Proteína Forkhead Box O3/metabolismo , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos , Camundongos Nus , Masculino
18.
Colloids Surf B Biointerfaces ; 241: 114049, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38908043

RESUMO

The colonisation of microorganisms such as bacteria forms a biofilm barrier on the wound's surface, preventing or delaying the penetration of antibacterial drugs. At the same time, continuous bacterial infection can cause oxidative stress and an inflammatory response and hinder angiogenesis, resulting in difficult wound healing. Based on the "one stone, three birds" strategy, a multi-functional nanoparticle composite soluble microneedle was designed and developed to solve this dilemma better. Ginsenoside-liposomes(R-Lipo) were prepared by ginsenoside Rg3, which had the effect of promoting repair, instead of cholesterol, and loaded with berberine (Ber), the antibacterial component of Coptis, together with polydopamine (PDA), which had anti-inflammatory and antioxidant properties, into microneedles based on hyaluronic acid (PDA/R-Lipo@BerMN). PDA/R-Lipo@BerMN tip can penetrate and destroy the integrity of the biofilm, dissolve under the action of hyaluronidase in the skin, and gradually release the drug to achieve rapid antibacterial, anti-inflammatory, antioxidant, and proliferation. As expected, the PDA/R-Lipo@BerMN patch effectively cleared ROS during wound closure, further promoted M2 macrophage polarisation, eradicated bacterial infection, and regulated the immune microenvironment, promoting inflammation suppression, collagen deposition, angiogenesis, and tissue regeneration.


Assuntos
Antibacterianos , Ginsenosídeos , Ácido Hialurônico , Agulhas , Polímeros , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Ginsenosídeos/farmacologia , Ginsenosídeos/química , Ginsenosídeos/administração & dosagem , Polímeros/química , Polímeros/farmacologia , Camundongos , Indóis/química , Indóis/farmacologia , Berberina/farmacologia , Berberina/química , Berberina/administração & dosagem , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/administração & dosagem , Biofilmes/efeitos dos fármacos , Solubilidade , Nanopartículas/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/administração & dosagem , Testes de Sensibilidade Microbiana
19.
Clin Nutr ; 43(8): 1769-1780, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936303

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent glocal cause of chronic hepatic disease, with incidence rates that continue to rise steadily. Treatment options for affected patients are currently limited to dietary changes and exercise interventions, with no drugs having been licensed for the treatment of this disease. There is thus a pressing need for the development of novel therapeutic strategies. Work from our group suggests that the primary bioactive ingredient in green tea, epigallocatechin gallate (EGCG), may help reduce liver fat content and protect against hepatic injury through the inhibition of dipeptidyl peptidase 4 (DPP4) expression and activity. The study investigated the potential pathways by which EGCG may improve NAFLD, identified the sites of interaction between EGCG and DPP4, and proposed novel clinical treatment strategies. METHODS: A clinical randomized controlled trial was conducted to investigate the potential efficacy of EGCG in NAFLD patients. The study compared relevant indices before and after EGCG administration. Animal models of NAFLD were constructed using male C57BL/6J mice fed a high-fat diet to observe the ameliorative effects of EGCG on the livers of the model mice and to investigate the potential pathways by which EGCG alleviates NAFLD. The interaction mechanism between EGCG and DPP4 was investigated using oleic acid and palmitic acid-treated HepG2 cell lines. Plasmids in which different sites had been disrupted were used to identify the effective interaction sites. RESULTS: ECGC was found to suppress the accumulation of lipids, inhibit inflammation, remediate dysregulated lipid metabolism, and improve the pathogenesis of NAFLD via the inhibition of the expression and activity of DPP4. CONCLUSIONS: The study results indicate that EGCG has a positive impact on improving NAFLD. These results highlight promising new opportunities to safely and effectively treat NAFLD in the clinic. STUDY ID NUMBER: ChiCTR2300076741; https://www.chictr.org.cn/.


Assuntos
Catequina , Dipeptidil Peptidase 4 , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Catequina/análogos & derivados , Catequina/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Masculino , Humanos , Camundongos , Dipeptidil Peptidase 4/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Pessoa de Meia-Idade , Feminino , Modelos Animais de Doenças , Adulto , Células Hep G2
20.
Huan Jing Ke Xue ; 45(6): 3679-3687, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897787

RESUMO

The threat of microplastic pollution in soil ecosystems has caused widespread concern. In order to clarify the effect of polyethylene microplastics on soil properties, a 4-month soil incubation experiment was conducted in this study to investigate the effect of different mass fraction (1 %, 2.5 %, and 5 %) and particle sizes (30 mesh and 100 mesh) of polyethylene microplastics on soil chemical properties, nutrient contents, and enzyme activities. The results showed that:① When the particle size was 100 mesh, microplastics at the mass concentrations of the 2.5 % and 5 % treatments significantly reduced soil pH, and the exposure of polyethylene microplastics had no significant effect on soil conductivity. ② Compared to that in CK, the addition of microplastics reduced soil available potassium, available phosphorus, and nitrate nitrogen to varying degrees. The addition of 100 mesh microplastics significantly increased soil organic matter and ammonium nitrogen. ③ When the particle size was 100 mesh, compared to that in CK, treatments of all concentrations significantly increased soil catalase activity and alkaline phosphatase, showing an increasing but not significant trend, and the 5 % concentration treatment significantly decreased soil sucrase activity. ④ Changes in soil properties were influenced by the addition of microplastics of different concentrations and sizes, with higher concentrations and smaller particle sizes having more significant effects. In conclusion, the effects of microplastics on soil properties were not as pronounced as expected, and future research should focus on the mechanisms involved in the different effects.


Assuntos
Microplásticos , Fósforo , Polietileno , Poluentes do Solo , Solo , Solo/química , Poluentes do Solo/análise , Fósforo/análise , Nitrogênio , Catalase/metabolismo , Nutrientes/análise , Tamanho da Partícula , Fosfatase Alcalina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...