Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 708
Filtrar
1.
Neural Regen Res ; 20(3): 763-778, 2025 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38886941

RESUMO

Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.

2.
Anal Chem ; 96(32): 13096-13102, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39090997

RESUMO

In attempts to obtain high-capacity Prussian blue nanomaterials, current efforts are predominantly focused on the particle-ensemble-level understanding of their structure-activity relationships. Complementarily, it would be insightful to screen out extraordinary individuals from the nanoparticle population. Using a simple and efficient technique of bright-field microscopy, this work enables, for the first time, quantitative characterization of the overall two-redox-center electrochemistry of single Prussian blue nanoparticles many at a time. Quantitative optical voltammograms with little interference from solvent breakdown and non-Faradaic electrode charging/discharging are extracted for each single nanoparticle, revealing clear heterogeneity among them. On this basis, the microscopic method allows a detailed comparative analysis between the two redox-active sites. It is found that while the synthesized nanoparticles show a similar specific capacity of the high-spin (HS-Fe) sites with STD/mean = 30%, most individual nanoparticles exhibit monodispersedly small capacities of the low-spin iron (LS-Fe) sites, only about 17±1 of the HS-Fe capacity. Most importantly, it is discovered that there is always a small fraction (∼8%) of the single nanoparticles showing an impressively tripled LS-Fe capacity. Facilitated by optical imaging, the discovery of this easily overlooked extraordinary subpopulation confers alternative opportunities for targeted efforts for material chemists to improve synthesis and material design based on these unusual individuals, which in turn implies the general significance of nanoparticle screening.

3.
Transl Oncol ; 48: 102077, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39106550

RESUMO

Cytochrome P450 F3 (CYP4F3) is recognized as a disease-associated immune response initiator that is involved in the synthesis of cholesterol, steroids, and lipids. This study identified the upregulation of CYP4F3 expression in colorectal cancer (CRC) and its association with poor patient prognosis through a comparative analysis between CRC tumor tissues with normal tissues from public databases. The overexpression of CYP4F3 in CT26.wt and SW620, promoted cell proliferation and migration, a reduction of cellular oxidative stress, an up-regulation of the oxidative stress-related pathway NRF2, and an inhibition of cellular ferroptosis. Additionally, inhibition of NRF2 activity stimulated cellular ferroptosis when CYP4F3 was overexpressed. Ferroptosis, characterized by iron-dependent lipid peroxidation, is a non-apoptotic way of cell death with a critical role in cancer development. When given a ferroptosis agonist to CYP4F3-overexpression CRC cells, NRF2 was activated, and cell proliferation and migration were reduced. Furthermore, the mice subcutaneously injected with CYP4F3-overexpression CT26.wt cells formed significantly larger tumors compared to the CYP4F3-vector CT26.wt cell group. This study systematically identified an important role of CYP4F3 in CRC development as a regulator of CRC cells to escape ferroptosis via NRF2, highlighting the significance of CYP4F3 as a potential therapeutic target for CRC.

4.
Biomol Ther (Seoul) ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39091238

RESUMO

Decellularized matrix transplantation has emerged as a promising therapeutic approach for repairing tissue defects, with numerous studies assessing its safety and efficacy in both animal models and clinical settings. The host immune response elicited by decellularized matrix grafts of natural biological origin plays a crucial role in determining the success of tissue repair, influenced by matrix heterogeneity and the inflammatory microenvironment of the wound. However, the specific immunologic mechanisms underlying the interaction between decellularized matrix grafts and the host immune system remain elusive. This article reviews the sources of decellularized matrices, available decellularization techniques, and residual immunogenic components. It focuses on the host immune response following decellularized matrix transplantation, with emphasis on the key mechanisms of Toll-like receptor, T-cell receptor, and TGF-ß/SMAD signaling in the stages of post-transplantation immunorecognition, immunomodulation, and tissue repair, respectively. Furthermore, it highlights the innovative roles of TLR10 and miR-29a-3p in improving transplantation outcomes. An in-depth understanding of the molecular mechanisms underlying the host immune response after decellularized matrix transplantation provides new directions for the repair of tissue defects.

5.
iScience ; 27(8): 110405, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39108735

RESUMO

The immune evasion of emerging SARS-CoV-2 variants significantly undermines current vaccination efforts, calling for an updated vaccine composition. To identify optimal booster candidates against circulating JN.1, a panel of variant spikes were characterized. The omicron spikes exhibited reduced plasma membrane expression, accompanied by lower cell-cell fusion but increased viral entry. Regimens with DNA prime-DNA boost or DNA prime-adenoviral vectored vaccine boost by intramuscular immunization elicited neutralizing antibody (NAbs) and T cell responses against all variants except BA.2.86 and JN.1. Intranasal immunization induced high IgA and NAb titers in bronchoalveolar lavage against all variants except BA.2.86 and JN.1. T cell responses were generally comparable for all immunogens tested. JN.1 completely escaped NAbs in one immunized cohort, and breakthrough infections marginally boosted antibody titers. Overall, this study indicates intrinsic difficulty in eliciting NAbs against the JN.1 strain, whereas vaccines based on XBB and EG.5.1 are relatively superior in generating cross-reactive NAbs.

6.
J Am Heart Assoc ; 13(16): e032409, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39158561

RESUMO

BACKGROUND: Serum lipids are causally involved in the occurrence of atherosclerosis, but their roles in cerebral small vessel disease remain unclear. This study aimed to investigate the causal roles of lipid or apolipoprotein traits in cerebral small vessel disease and to determine the effects of lipid-lowering interventions on this disease. METHODS AND RESULTS: Data on genetic instruments of lipids/apolipoproteins, as well as characteristic cerebral small vessel disease manifestations, including small vessel stroke (SVS) and white matter hyperintensity (WMH), were obtained from publicly genome-wide association studies. Through 2-sample Mendelian randomization analyses, it was found that decreased levels of high-density lipoprotein cholesterol (odds ratio [OR], 0.85, P=0.007) and apolipoprotein A-I (OR, 0.83, P=0.005), as well as increased level of triglycerides (OR, 1.16, P=0.025) were associated with a higher risk of SVS. A low level of high-density lipoprotein cholesterol (OR, 0.93, P=0.032) was associated with larger WMH volume. Specifically, the genetically determined expressions of lipid fractions in various size-defined lipoprotein particles were more closely related to the risk of SVS than WMH. Moreover, it was found that the hypertension trait ranked at the top in mediating the causal effect of hyperlipidemia on SVS and WMH by using Mendelian randomization-based mediation analysis. For drug-target Mendelian randomization, the low-density lipoprotein cholesterol-reducing genetic variation alleles at HMGCR and NL1CL1 genes and the high-density lipoprotein cholesterol-raising genetic variation alleles at the CETP gene were predicted to decrease the risk of SVS. CONCLUSIONS: The present Mendelian randomization study indicates that genetically determined hyperlipidemia is closely associated with a higher risk of cerebral small vessel disease, especially SVS. Lipid-lowering drugs could be potentially considered for the therapies and preventions of SVS rather than WMH.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Estudo de Associação Genômica Ampla , Hipolipemiantes , Análise da Randomização Mendeliana , Humanos , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/sangue , Doenças de Pequenos Vasos Cerebrais/epidemiologia , Hipolipemiantes/uso terapêutico , Fatores de Risco , HDL-Colesterol/sangue , Apolipoproteínas/genética , Apolipoproteínas/sangue , Proteínas de Transferência de Ésteres de Colesterol/genética , Predisposição Genética para Doença , Medição de Risco , Lipídeos/sangue , Triglicerídeos/sangue , Polimorfismo de Nucleotídeo Único
7.
Heliyon ; 10(14): e34179, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39092257

RESUMO

Purpose: Individuals with chronic kidney disease (CKD) face an elevated residual risk of cardiovascular events, but the relationship between this residual risk and 1,5-anhydroglucitol (1,5-AG) is uncertain. Our study aimed to examine the effect of 1,5-AG on major adverse cardiovascular events (MACEs) and all-cause mortality in acute coronary syndrome (ACS) individuals. Methods: 1253 ACS participants hospitalized were enrolled at Beijing Hospital between March 2017 and March 2020. All participants were classified into 2 groups based on their eGFR (60 ml/min/1.73 m2). The link between 1,5-AG and adverse outcome was investigated in non-CKD and CKD participants. Results: CKD patients had reduced concentrations of 1,5-AG than those without CKD. Throughout a median follow-up duration of 43 months, 1,5-AG was an autonomous hazard factor for MACEs and all-cause mortality. 1,5-AG<14 µg/ml participants had greater MACEs and all-cause mortality risk than those with 1,5-AG≥14 µg/ml, regardless of renal function. Furthermore, concomitant reduced concentrations of 1,5-AG and CKD portended a dismal prognosis in ACS patients. Conclusions: 1,5-AG was autonomously linked to MACEs and all-cause mortality in ACS participants with both non-CKD and CKD. Co-presence of reduced concentrations of 1,5-AG and CKD may portend adverse clinical outcomes.

8.
Front Endocrinol (Lausanne) ; 15: 1360861, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39092284

RESUMO

Background: Gut microbiota has significant impact on the cardio-metabolism and inflammation, and is implicated in the pathogenesis and progression of atherosclerosis. However, the long-term prospective association between trimethylamine N-oxide (TMAO) level and major adverse clinical events (MACEs) in patients with coronary artery disease (CAD) with or without diabetes mellitus (DM) habitus remains to be investigated. Methods: This prospective, single-center cohort study enrolled 2090 hospitalized CAD patients confirmed by angiography at Beijing Hospital from 2017-2020. TMAO levels were performed using liquid chromatography-tandem mass spectrometry. The composite outcome of MACEs was identified by clinic visits or interviews annually. Multivariate Cox regression analysis, Kaplan-Meier analysis, and restricted cubic splines were mainly used to explore the relationship between TMAO levels and MACEs based on diabetes mellitus (DM) habitus. Results: During the median follow-up period of 54 (41, 68) months, 266 (12.7%) developed MACEs. Higher TMAO levels, using the tertile cut-off value of 318.28 ng/mL, were significantly found to be positive dose-independent for developing MACEs, especially in patients with DM (HR 1.744, 95%CI 1.084-2.808, p = 0.022). Conclusions: Higher levels of TMAO are significantly associated with long-term MACEs among CAD patients with DM. The combination of TMAO in patients with CAD and DM is beneficial for risk stratification and prognosis.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus , Metilaminas , Humanos , Metilaminas/sangue , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/epidemiologia , Feminino , Masculino , Estudos Prospectivos , Pessoa de Meia-Idade , Idoso , Diabetes Mellitus/epidemiologia , Prognóstico , Biomarcadores/sangue , Seguimentos , Fatores de Risco , Estudos de Coortes
9.
Nat Commun ; 15(1): 6559, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095340

RESUMO

Macrocyclic conformations play a crucial role in regulating their properties. Our understanding of the determinants to control macrocyclic conformation interconversion is still in its infancy. Here we present a macrocycle, octamethyl cyclo[4](1,3-(4,6)-dimethylbenzene)[4]((4,6-benzene)(1,3-dicarboxylate) (OC-4), that can exist at 298 K as two stable atropisomers with C2v and C4v symmetry denoted as C2v-OC-4 and C4v-OC-4, respectively. Heating induces the efficient stepwise conversion of C2v- to C4v-OC-4 via a Cs-symmetric intermediate (Cs-OC-4). It differs from the typical transition state-mediated processes of simple C-C single bond rotations. Hydrolysis and further esterification with a countercation dependence promote the generation of C2v- and Cs-OC-4 from C4v-OC-4. In contrast to C2v-OC-4, C4v-OC-4 can bind linear guests to form pseudo-rotaxans, or bind C60 or C70 efficiently. The present study highlights the differences in recognition behavior that can result from conformational interconversion, as well as providing insights into the basic parameters that govern coupled molecular rotations.

10.
Crit Rev Microbiol ; : 1-12, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132685

RESUMO

Dental caries, as a biofilm-related disease, is closely linked to dysbiosis in microbial ecology within dental biofilms. Beyond its impact on oral health, bacteria within the oral cavity pose systemic health risks by potentially entering the bloodstream, thereby increasing susceptibility to bacterial endocarditis, among other related diseases. Streptococcus mutans, a principal cariogenic bacterium, possesses virulence factors crucial to the pathogenesis of dental caries. Its ability to adhere to tooth surfaces, produce glucans for biofilm formation, and metabolize sugars into lactic acid contributes to enamel demineralization and the initiation of carious lesions. Its aciduricity and ability to produce bacteriocins enable a competitive advantage, allowing it to thrive in acidic environments and dominate in changing oral microenvironments. In contrast, commensal streptococci, such as Streptococcus sanguinis, Streptococcus gordonii, and Streptococcus salivarius, act as primary colonizers and compete with S. mutans for adherence sites and nutrients during biofilm formation. This competition involves the production of alkali, peroxides, and antibacterial substances, thereby inhibiting S. mutans growth and maintaining microbial balance. This dynamic interaction influences the balance of oral microbiota, with disruptions leading to shifts in microbial composition that are marked by rapid increases in S. mutans abundance, contributing to the onset of dental caries. Thus, understanding the dynamic interactions between commensal and pathogenic bacteria in oral microecology is important for developing effective strategies to promote oral health and prevent dental caries. This review highlights the roles and competitive interactions of commensal bacteria and S. mutans in oral microecology, emphasizing the importance of maintaining oral microbial balance for health, and discusses the pathological implications of perturbations in this balance.

11.
J Environ Manage ; 367: 121964, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067335

RESUMO

Photoelectrocatalysis (PEC) oxidation technology with the combination of electrocatalysis and photocatalysis is an ideal candidate for treatment of dyeing wastewater containing multifarious intractable organic compounds with high chroma. Constructing high-quality heterojunction photoelectrodes can effectively suppress the recombination of photo-generated carriers, thereby achieving efficient removal of pollution. Herein, a beaded Bi2MoO6@α-MnO2 core-shell architecture with tunable hetero-interface was prepared by simple hydrothermal-solvothermal process. The as-synthesized Bi2MoO6@α-MnO2 had larger electrochemically active surface area, smaller charge transfer resistance and negative flat band potential, and higher separation efficiency of e-/h+ pairs than pure α-MnO2 or Bi2MoO6. It is noteworthy that the as-synthesized Bi2MoO6@α-MnO2 showed Z-scheme heterostructure as demonstrated by the free radical quenching experiments. The optimized Bi2MoO6@α-MnO2-2.5 exhibited the highest degradation rate of 88.64% in 120 min for reactive brilliant blue (KN-R) and accelerated stability with long-term(∼10000s) at the current density of 50 mA cm-2 in 1.0 mol L-1 H2SO4 solution. This study provides valuable insights into the straightforward preparation of heterogeneous electrodes, offering a promising approach for the treatment of wastewater in various industrial applications.


Assuntos
Compostos de Manganês , Águas Residuárias , Águas Residuárias/química , Catálise , Compostos de Manganês/química , Óxidos/química , Bismuto/química , Poluentes Químicos da Água/química , Oxirredução , Técnicas Eletroquímicas , Molibdênio
12.
Oncogene ; 43(33): 2517-2530, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39004633

RESUMO

Elevated infiltration of tumor-associated macrophages (TAMs) drives tumor progression and correlates with poor prognosis for various tumor types. Our research identifies that the ablation of the Pim-1 proto-oncogene (PIM1) in non-small cell lung cancer (NSCLC) suppresses TAM infiltration and prevents them from polarizing toward the M2 phenotype, thereby reshaping the tumor immune microenvironment (TME). The predominant mechanism through which PIM1 exerts its impact on macrophage chemotaxis and polarization involves CC motif chemokine ligand 2 (CCL2). The expression level of PIM1 is positively correlated with high CCL2 expression in NSCLC, conferring a worse overall patient survival. Mechanistically, PIM1 deficiency facilitates the reprogramming of TAMs by targeting nuclear factor kappa beta (NF-κB) signaling and inhibits CCL2 transactivation by NSCLC cells. The decreased secretion of CCL2 impedes TAM accumulation and their polarization toward a pro-tumoral phenotype. Furthermore, Dual blockade of Pim1 and PD-1 collaboratively suppressed tumor growth, repolarized macrophages, and boosted the efficacy of anti-PD-1 antibody. Collectively, our findings elucidate the pivotal role of PIM1 in orchestrating TAMs within the TME of NSCLC and highlight the potential of PIM1 inhibition as a strategy for enhancing the efficacy of cancer immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Quimiocina CCL2 , Neoplasias Pulmonares , NF-kappa B , Proteínas Proto-Oncogênicas c-pim-1 , Microambiente Tumoral , Macrófagos Associados a Tumor , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Microambiente Tumoral/imunologia , Humanos , Quimiocina CCL2/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Camundongos , NF-kappa B/metabolismo , Animais , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Proto-Oncogene Mas , Macrófagos/imunologia , Macrófagos/metabolismo , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Transdução de Sinais , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo
13.
J Hazard Mater ; 476: 135179, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39003811

RESUMO

Basalt fiber (BF) with modification of iron (Fe-MBF) and calcium (Ca-MBF) were filled into constructed wetland-microbial fuel cell (CW-MFC) for innovative comparison of improved performance under perfluorooctanoic acid (PFOA) exposure. More enhancement on nitrogen and phosphorus removal was observed by Fe-MBF than Ca-MBF, with significant increase of ammonium (NH4+-N) removal by 3.36-5.66 % (p < 0.05) compared to control, even under PFOA stress. Markedly higher removal efficiency of PFOA by 4.76-8.75 % (p < 0.05) resulted from Fe-MBF, compared to Ca-MBF and control BF groups. Besides, superior electrochemical performance was found in Fe-MBF group, with maximum power density 28.65 % higher than control. Fe-MBF caused higher abundance of dominant microbes on electrodes ranged from phylum to family. Meanwhile, ammonia oxidizing bacteria like Nitrosomonas was more abundant in Fe-MBF group, which was positively correlated to NH4+-N and total nitrogen removal. Some other functional genera involved in denitrification and phosphorus-accumulation were enriched by Fe-MBF on electrodes and MBF carrier, including Dechloromonas, Candidatus_Competibacter, and Pseudomonas. Additionally, there were more biomarkers in Fe-MBF group, like Pseudarcobacter and Acidovorax, conducive to nitrogen and iron cycling. Most functional genes of nitrogen, carbon, and sulfur metabolisms were up-regulated with Fe-MBF filling, causing improvement on nitrogen removal.


Assuntos
Bactérias , Fontes de Energia Bioelétrica , Fósforo , Áreas Alagadas , Bactérias/metabolismo , Bactérias/genética , Fósforo/química , Nitrogênio , Poluentes Químicos da Água/toxicidade , Ferro/química , Caprilatos , Cálcio/metabolismo
14.
J Tradit Complement Med ; 14(4): 446-455, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035685

RESUMO

Background and aim: The most effective among the acupoints remains to be determined for treating diabetic gastroparesis (DGP). This study aimed to compare single and combination acupoints for their effectiveness in DGP. Experimental procedure: A prospective, patient-assessor-blinded randomised controlled trial was designed to compare the efficacy of 8-week acupuncture at a single acupoint (Zhongwan, CV-12), combination acupoints (Zhongwan, CV-12 and Zusanli, ST-36), and a sham-acupoint, in 99 adults with DGP. The primary clinical outcome was measured using the Gastroparesis Cardinal Symptom Index (GCSI), while barium meal examination, fasting plasma glucose, the 2-h plasma glucose, short-form health survey (SF-36), and GCSI subscales were performed for evaluating secondary clinical outcomes. These results were analysed by two factorial analysis of variance (ANOVA) test, Chi-Square, Fisher Exact, Kruskal-Wallis tests and Tukey's Honest Significant Difference (HSD) test. Results: After randomization, 97 patients completed the study. GCSI scores of all groups decreased during both post-treatment and the follow-up period, they were statistically significant compared to the baseline period (p < 0.01), but there was no significant difference among the groups (p > 0.05) during the post-treatment period. GCSI scores improved more in the combination acupoints group than in the single acupoint group which was better than the sham group after treatment. During the follow-up period, the same trend was observed. Conclusions: Among patients with DGP, the combination acupoints were more beneficial compared with single and sham acupoints. Trial registration number: NCT02452489.

15.
J Adv Res ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029900

RESUMO

INTRODUCTION: The intestine, frequently subjected to pelvic or abdominal radiotherapy, is particularly vulnerable to delayed effects of acute radiation exposure (DEARE) owing to its high radiation sensitivity. Radiation-induced intestinal senescence, a result of DEARE, profoundly affects the well-being and quality of life of radiotherapy patients. However, targeted pharmaceutical interventions for radiation-induced senescence are currently scarce. Our findings showcase that nicotinamide riboside(NR) effectively alleviates radiation-induced intestinal senescence, offering crucial implications for utilizing NR as a pharmacological agent to combat intestinal DEARE. OBJECTIVES: The aim of this study was to investigate the ability of NR to reduce radiation induced intestinal senescence and explore its related mechanisms. METHODS: Male C57BL/6J mice were randomly divided into CON, IR, and IR + NR groups. The mice in the IR and IR + NR groups were subjected to a 6.0 Gy γ-ray total body exposure. After 8 weeks, the mice in the IR + NR group received NR via gavage at a dose of 400 mg/kg/d for 21 days. Then the mice were used for sample collection. RESULTS: Our results demonstrate that NR can significantly mitigate radiation-induced intestinal senescence. Furthermore, our findings indicate that NR can mitigate oxidative damage, restore the normal function of intestinal stem cells, regulate the disruption of the intestinal symbiotic ecosystem and address metabolic abnormalities. In addition, the underlying mechanisms involve the activation of SIRT6, SIRT7 and the inhibition of the mTORC1 pathway by NR. CONCLUSION: In conclusion, our results reveal the substantial inhibitory effects of NR on radiation-induced intestinal senescence. These findings offer valuable insights into the potential therapeutic use of NR as a pharmacological agent for alleviating intestinal DEARE.

16.
Chin Herb Med ; 16(3): 392-400, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39072194

RESUMO

In Northeast China, Goubao pickle is a popular food fermented from the roots of Platycodon grandiflorum as the main material, offering a unique flavor and rich nutritional value. Platycosides in roots of P. grandiflorum may play a crucial role in determining the quality of Goubao pickle through microorganism fermentation. However, biotransfermation of platycosides has not been reviewed during fermentation. In this study, we reviewed platycosides in chemical diversity, metabolic processes in vivo, biotransformation of platycosides in vitro, and pharmacological effects. Finally, we also discussed how to improve the bioactive secondary platycosides we desire by regulating enzymes from microorganisms in the future.

17.
Macromol Biosci ; : e2400194, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073313

RESUMO

Surface modification plays a crucial role in enhancing the functionality of implanted interventional medical devices, offering added advantages to patients, particularly in terms of lubrication and prevention of undesired adsorption of biomolecules and microorganisms, such as proteins and bacteria, on the material surfaces. Utilizing polymer brushes for surface modification is currently a promising approach to maintaining the inherent properties of materials while introducing new functionalities to surfaces. Here, surface-initiated atom transfer radical polymerization (SI-ATRP) technology to effectively graft anionic, cationic, and neutral polymer brushes from a mixed silane initiating layer is employed. The presence of a polymer brush layer significantly enhances the lubrication performance of the substrates and ensures a consistently low coefficient of friction over thousands of friction cycles in aqueous environments. The antimicrobial efficacy of polymer brushes is evaluated against gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli). It is observed that polym er brushes grafted to diverse substrate surfaces displays notable antibacterial properties, effectively inhibiting bacterial attachment. Furthermore, the polymer brush layer shows favorable biocompatibility and anti-inflammatory characteristics, which shows potential applications in dental materials, and other fields such as catheters and food packaging.

18.
Trials ; 25(1): 512, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075587

RESUMO

BACKGROUND: In the treatment of advanced pancreatic cancer, chemotherapy plays a pivotal role. Despite its effectiveness, this regimen is often marred by side effects such as anemia, neuropathy, fatigue, nausea, and malnutrition, which significantly affect patients' tolerance to the treatment. Some studies have shown that vitamin C could potentially augment chemotherapy's tolerability, notably by boosting iron absorption, ameliorating anemia, and relieving pain and numbness in hands and feet. Nevertheless, the integration of vitamin C with chemotherapy to mitigate toxic side effects and enhance the quality of life for advanced pancreatic cancer patients has not been examined in any randomized controlled trials to date. METHODS: A prospective, single-center, open-label, randomized controlled trial will be conducted at Fudan University Shanghai Cancer Center from September 2023 to September 2026. A total of at least 100 patients with advanced pancreatic adenocarcinoma exhibiting distant metastases will be recruited and randomly assigned to the chemotherapy group or the chemotherapy plus vitamin C group. The primary endpoint is the rate of anemia. Secondary endpoints include the rate of grade 3 neuropathy, change of numeric rating scale, quality of life, and overall survival. DISCUSSION: This study aims to assess the impact of low-dose vitamin C on enhancing the quality of life for patients with metastatic pancreatic cancer undergoing gemcitabine and nab-paclitaxel chemotherapy. TRIAL REGISTRATION: The trial was registered with the ClinicalTrials.gov (NCT06018883) on August 31, 2023.


Assuntos
Anemia , Protocolos de Quimioterapia Combinada Antineoplásica , Ácido Ascórbico , Neoplasias Pancreáticas , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/mortalidade , Ácido Ascórbico/uso terapêutico , Ácido Ascórbico/efeitos adversos , Ácido Ascórbico/administração & dosagem , Anemia/tratamento farmacológico , Estudos Prospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Gencitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/efeitos adversos , Desoxicitidina/uso terapêutico , Desoxicitidina/administração & dosagem , Paclitaxel/efeitos adversos , Paclitaxel/administração & dosagem , Resultado do Tratamento , China , Pessoa de Meia-Idade , Albuminas/efeitos adversos , Albuminas/administração & dosagem , Albuminas/uso terapêutico , Masculino , Feminino , Adulto
19.
Int J Biol Macromol ; : 133727, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39084975

RESUMO

Pickering emulsions have attracted much attention as a novel emulsifying technology. This research to explore Zein-Citrus pectin nanoparticles stabilized cinnamon essential oil (CEO) Pickering emulsion (ZCCPEs) for constructing Pickering emulsion edible film (PEF). Unlike traditional research, which focuses on antibacterial and antioxidant activities, our research examined the physical properties of PEF, specifically changes in wettability. The results show that PEF has better transparency and tensile strength than the pectin alone direct emulsion film (PAEF), and the spatial distribution of Pickering emulsion droplets gives different wettability on both sides of PEF. The partially hydrophobic upside has important application value in food packaging. At the same time, the PEF is biodegradable and environmentally non-polluting. The edible film loaded with essential oils, developed based on the Pickering stabilization mechanism in this study, possesses several desirable characteristics for potential used as bioactive packaging films in food applications.

20.
Neurotox Res ; 42(4): 35, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008165

RESUMO

This study elucidates the molecular mechanisms by which FABP3 regulates neuronal apoptosis via mitochondrial autophagy in the context of cerebral ischemia-reperfusion (I/R). Employing a transient mouse model of middle cerebral artery occlusion (MCAO) established using the filament method, brain tissue samples were procured from I/R mice. High-throughput transcriptome sequencing on the Illumina CN500 platform was performed to identify differentially expressed mRNAs. Critical genes were selected by intersecting I/R-related genes from the GeneCards database with the differentially expressed mRNAs. The in vivo mechanism was explored by infecting I/R mice with lentivirus. Brain tissue injury, infarct volume ratio in the ischemic penumbra, neurologic deficits, behavioral abilities, neuronal apoptosis, apoptotic factors, inflammatory factors, and lipid peroxidation markers were assessed using H&E staining, TTC staining, Longa scoring, rotation experiments, immunofluorescence staining, and Western blot. For in vitro validation, an OGD/R model was established using primary neuron cells. Cell viability, apoptosis rate, mitochondrial oxidative stress, morphology, autophagosome formation, membrane potential, LC3 protein levels, and colocalization of autophagosomes and mitochondria were evaluated using MTT assay, LDH release assay, flow cytometry, ROS/MDA/GSH-Px measurement, transmission electron microscopy, MitoTracker staining, JC-1 method, Western blot, and immunofluorescence staining. FABP3 was identified as a critical gene in I/R through integrated transcriptome sequencing and bioinformatics analysis. In vivo experiments revealed that FABP3 silencing mitigated brain tissue damage, reduced infarct volume ratio, improved neurologic deficits, restored behavioral abilities, and attenuated neuronal apoptosis, inflammation, and mitochondrial oxidative stress in I/R mice. In vitro experiments demonstrated that FABP3 silencing restored OGD/R cell viability, reduced neuronal apoptosis, and decreased mitochondrial oxidative stress. Moreover, FABP3 induced mitochondrial autophagy through ROS, which was inhibited by the free radical scavenger NAC. Blocking mitochondrial autophagy with sh-ATG5 lentivirus confirmed that FABP3 induces mitochondrial dysfunction and neuronal apoptosis by activating mitochondrial autophagy. In conclusion, FABP3 activates mitochondrial autophagy through ROS, leading to mitochondrial dysfunction and neuronal apoptosis, thereby promoting cerebral ischemia-reperfusion injury.


Assuntos
Apoptose , Autofagia , Proteína 3 Ligante de Ácido Graxo , Mitocôndrias , Neurônios , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Apoptose/fisiologia , Autofagia/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Camundongos , Mitocôndrias/metabolismo , Masculino , Proteína 3 Ligante de Ácido Graxo/metabolismo , Proteína 3 Ligante de Ácido Graxo/genética , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...