Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 90(2): 400-416, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37010491

RESUMO

PURPOSE: Recent development of ultra-low-field (ULF) MRI presents opportunities for low-power, shielding-free, and portable clinical applications at a fraction of the cost. However, its performance remains limited by poor image quality. Here, a computational approach is formulated to advance ULF MR brain imaging through deep learning of large-scale publicly available 3T brain data. METHODS: A dual-acquisition 3D superresolution model is developed for ULF brain MRI at 0.055 T. It consists of deep cross-scale feature extraction, attentional fusion of two acquisitions, and reconstruction. Models for T1 -weighted and T2 -weighted imaging were trained with 3D ULF image data sets synthesized from the high-resolution 3T brain data from the Human Connectome Project. They were applied to 0.055T brain MRI with two repetitions and isotropic 3-mm acquisition resolution in healthy volunteers, young and old, as well as patients. RESULTS: The proposed approach significantly enhanced image spatial resolution and suppressed noise/artifacts. It yielded high 3D image quality at 0.055 T for the two most common neuroimaging protocols with isotropic 1.5-mm synthetic resolution and total scan time under 20 min. Fine anatomical details were restored with intrasubject reproducibility, intercontrast consistency, and confirmed by 3T MRI. CONCLUSION: The proposed dual-acquisition 3D superresolution approach advances ULF MRI for quality brain imaging through deep learning of high-field brain data. Such strategy can empower ULF MRI for low-cost brain imaging, especially in point-of-care scenarios or/and in low-income and mid-income countries.


Assuntos
Aprendizado Profundo , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem
2.
Nat Commun ; 14(1): 2195, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069169

RESUMO

As a key oscillatory activity in the brain, thalamic spindle activities are long believed to support memory consolidation. However, their propagation characteristics and causal actions at systems level remain unclear. Using functional MRI (fMRI) and electrophysiology recordings in male rats, we found that optogenetically-evoked somatosensory thalamic spindle-like activities targeted numerous sensorimotor (cortex, thalamus, brainstem and basal ganglia) and non-sensorimotor limbic regions (cortex, amygdala, and hippocampus) in a stimulation frequency- and length-dependent manner. Thalamic stimulation at slow spindle frequency (8 Hz) and long spindle length (3 s) evoked the most robust brain-wide cross-modal activities. Behaviorally, evoking these global cross-modal activities during memory consolidation improved visual-somatosensory associative memory performance. More importantly, parallel visual fMRI experiments uncovered response potentiation in brain-wide sensorimotor and limbic integrative regions, especially superior colliculus, periaqueductal gray, and insular, retrosplenial and frontal cortices. Our study directly reveals that thalamic spindle activities propagate in a spatiotemporally specific manner and that they consolidate associative memory by strengthening multi-target memory representation.


Assuntos
Consolidação da Memória , Masculino , Ratos , Animais , Consolidação da Memória/fisiologia , Encéfalo/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/fisiologia , Lobo Frontal/fisiologia , Imageamento por Ressonância Magnética
3.
Neuroimage ; 270: 119943, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828157

RESUMO

Despite its prominence in learning and memory, hippocampal influence in early auditory processing centers remains unknown. Here, we examined how hippocampal activity modulates sound-evoked responses in the auditory midbrain and thalamus using optogenetics and functional MRI (fMRI) in rodents. Ventral hippocampus (vHP) excitatory neuron stimulation at 5 Hz evoked robust hippocampal activity that propagates to the primary auditory cortex. We then tested 5 Hz vHP stimulation paired with either natural vocalizations or artificial/noise acoustic stimuli. vHP stimulation enhanced auditory responses to vocalizations (with a negative or positive valence) in the inferior colliculus, medial geniculate body, and auditory cortex, but not to their temporally reversed counterparts (artificial sounds) or broadband noise. Meanwhile, pharmacological vHP inactivation diminished response selectivity to vocalizations. These results directly reveal the large-scale hippocampal participation in natural sound processing at early centers of the ascending auditory pathway. They expand our present understanding of hippocampus in global auditory networks.


Assuntos
Córtex Auditivo , Colículos Inferiores , Colículos Inferiores/fisiologia , Vias Auditivas/fisiologia , Córtex Auditivo/fisiologia , Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Corpos Geniculados/fisiologia , Hipocampo
4.
Sci Adv ; 8(46): eabo2098, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383661

RESUMO

Major depressive disorder (MDD) is a devastating mental disorder that affects up to 17% of the population worldwide. Although brain-wide network-level abnormalities in MDD patients via resting-state functional magnetic resonance imaging (rsfMRI) exist, the mechanisms underlying these network changes are unknown, despite their immense potential for depression diagnosis and management. Here, we show that the astrocytic calcium-deficient mice, inositol 1,4,5-trisphosphate-type-2 receptor knockout mice (Itpr2-/- mice), display abnormal rsfMRI functional connectivity (rsFC) in depression-related networks, especially decreased rsFC in medial prefrontal cortex (mPFC)-related pathways. We further uncover rsFC decreases in MDD patients highly consistent with those of Itpr2-/- mice, especially in mPFC-related pathways. Optogenetic activation of mPFC astrocytes partially enhances rsFC in depression-related networks in both Itpr2-/- and wild-type mice. Optogenetic activation of the mPFC neurons or mPFC-striatum pathway rescues disrupted rsFC and depressive-like behaviors in Itpr2-/- mice. Our results identify the previously unknown role of astrocyte dysfunction in driving rsFC abnormalities in depression.

5.
Cell Prolif ; 55(5): e13226, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35403306

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. However, the treatment regimens for TNBC are limited. Chromosome segregation 1-like (CSE1L), also called cellular apoptosis susceptibility protein (CAS), is highly expressed in breast cancer and plays a crucial role in the progression of various tumours. However, the involvement of CAS in TNBC remains elusive. In this study, we showed that the expression of CAS was higher in TNBC samples than in non-TNBC samples in the Gene Expression Omnibus database. Knockdown of CAS inhibited MDA-MB-231 cell growth, migration and invasion. Further RNA-seq analysis revealed that complement pathway activity was significantly elevated. Of note, complement component 3 (C3), the key molecule in the complement pathway, was significantly upregulated, and the expression of C3 was negatively correlated with that of CAS in breast cancer. Lower C3 expression was related to poor prognosis. Interestingly, the expression level of C3 was positively correlated with the infiltration of multiple immune cells. Taken together, our findings suggest that CAS participates in the development of TNBC through C3-mediated immune cell suppression and might constitute a potential therapeutic target for TNBC.


Assuntos
Complemento C3/metabolismo , Neoplasias de Mama Triplo Negativas , Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteína de Suscetibilidade a Apoptose Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias de Mama Triplo Negativas/patologia
6.
Neuroimage ; 235: 118032, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33836268

RESUMO

Brain possesses a complex spatiotemporal architecture for efficient information processing and computing. However, it remains unknown how neural signal propagates to its intended targets brain-wide. Using optogenetics and functional MRI, we arbitrarily initiated various discrete neural activity pulse trains with different temporal patterns and revealed their distinct long-range propagation targets within the well-defined, topographically organized somatosensory thalamo-cortical circuit. We further observed that such neural activity propagation over long range could modulate brain-wide sensory functions. Electrophysiological analysis indicated that distinct propagation pathways arose from system level neural adaptation and facilitation in response to the neural activity temporal characteristics. Together, our findings provide fundamental insights into the long-range information transfer and processing. They directly support that temporal coding underpins the whole brain functional architecture in presence of the vast and relatively static anatomical architecture.


Assuntos
Encéfalo/fisiologia , Vias Neurais/fisiologia , Animais , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiologia , Optogenética , Ratos , Ratos Sprague-Dawley , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia
7.
Med Oncol ; 37(5): 43, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32270348

RESUMO

Breast cancer is the most common cancer in women. Although several studies demonstrated cellular apoptosis susceptibility protein (CAS) involved in the development of breast cancer, the underlying mechanisms of CAS regulating cell processes in the breast cancer remain elusive. In the present study, we explored the possible mechanism of CAS in contributing to the cell proliferation in the breast cancer cell line MCF-7. Knockdown of CAS led to the reduction of cell viability and proliferation. Furthermore, cell cycle was arrested in G0/G1 phase after knocking down CAS with the decrease of cyclinD1. In addition, RNA-seq analysis for the CAS knockdown cells demonstrated that total eleven genes were significantly altered (Fold changes > 2). Of note, the expression of cyp24a1 was dramatically increased in the shCAS cells compared to that of shNC cells as well as confirmed by quantitative real-time polymerase chain reaction (qPCR). These observations clarified the previous conflicting results on the cell fates of the breast cells regulated by CAS and provide new insight into the role of CAS in the development of breast cancer.


Assuntos
Neoplasias da Mama/patologia , Proliferação de Células/genética , Proteína de Suscetibilidade a Apoptose Celular/metabolismo , Vitamina D3 24-Hidroxilase/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo Celular/genética , Sobrevivência Celular/genética , Proteína de Suscetibilidade a Apoptose Celular/genética , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Prognóstico
8.
Neuroimage ; 201: 115985, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31299370

RESUMO

Blood-oxygen-level-dependent (BOLD) resting-state functional MRI (rsfMRI) has emerged as a valuable tool to map complex brain-wide functional networks, predict cognitive performance and identify biomarkers for neurological diseases. However, interpreting these findings poses challenges, as the neural basis of rsfMRI connectivity remains poorly understood. The thalamus serves as a relay station and modulates diverse long-range cortical functional integrations, yet few studies directly interrogate its role in brain-wide rsfMRI connectivity. Utilizing a multi-modal approach of rsfMRI, optogenetic stimulation and multi-depth cortical electrophysiology recording, we examined whether and how the somatosensory thalamus contributes to cortical interhemispheric rsfMRI connectivity. We found that low frequency (1 Hz) optogenetic stimulation of somatosensory-specific ventral posteromedial (VPM) thalamocortical excitatory neurons increased the interhemispheric rsfMRI connectivity in all examined sensory cortices, somatosensory, visual and auditory, and the local intrahemispheric BOLD activity at infraslow frequency (0.01-0.1 Hz). In parallel, multi-depth local field potential recordings at bilateral primary somatosensory cortices revealed increased interhemispheric correlations of low frequency neural oscillations (i.e., mainly < 10 Hz) at all cortical layers. Meanwhile, pharmacologically inhibiting VPM thalamocortical neurons decreased interhemispheric rsfMRI connectivity and local intrahemispheric infraslow BOLD activity in all sensory cortices. Taken together, our findings demonstrate that low frequency activities in the thalamo-cortical network contribute to brain-wide rsfMRI connectivity, highlighting the thalamus as a pivotal region that underlies rsfMRI connectivity.


Assuntos
Vias Neurais/fisiologia , Células Receptoras Sensoriais/fisiologia , Tálamo/fisiologia , Animais , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley , Descanso
9.
Proc Natl Acad Sci U S A ; 116(20): 10122-10129, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31028140

RESUMO

Blood oxygen level-dependent functional MRI (fMRI) constitutes a powerful neuroimaging technology to map brain-wide functions in response to specific sensory or cognitive tasks. However, fMRI mapping of the vestibular system, which is pivotal for our sense of balance, poses significant challenges. Physical constraints limit a subject's ability to perform motion- and balance-related tasks inside the scanner, and current stimulation techniques within the scanner are nonspecific to delineate complex vestibular nucleus (VN) pathways. Using fMRI, we examined brain-wide neural activity patterns elicited by optogenetically stimulating excitatory neurons of a major vestibular nucleus, the ipsilateral medial VN (MVN). We demonstrated robust optogenetically evoked fMRI activations bilaterally at sensorimotor cortices and their associated thalamic nuclei (auditory, visual, somatosensory, and motor), high-order cortices (cingulate, retrosplenial, temporal association, and parietal), and hippocampal formations (dentate gyrus, entorhinal cortex, and subiculum). We then examined the modulatory effects of the vestibular system on sensory processing using auditory and visual stimulation in combination with optogenetic excitation of the MVN. We found enhanced responses to sound in the auditory cortex, thalamus, and inferior colliculus ipsilateral to the stimulated MVN. In the visual pathway, we observed enhanced responses to visual stimuli in the ipsilateral visual cortex, thalamus, and contralateral superior colliculus. Taken together, our imaging findings reveal multiple brain-wide central vestibular pathways. We demonstrate large-scale modulatory effects of the vestibular system on sensory processing.


Assuntos
Mapeamento Encefálico , Núcleos Vestibulares/fisiologia , Animais , Percepção Auditiva/fisiologia , Imageamento por Ressonância Magnética , Masculino , Optogenética , Ratos Sprague-Dawley , Percepção Visual/fisiologia
10.
Proc Natl Acad Sci U S A ; 114(33): E6972-E6981, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760982

RESUMO

The hippocampus, including the dorsal dentate gyrus (dDG), and cortex engage in bidirectional communication. We propose that low-frequency activity in hippocampal-cortical pathways contributes to brain-wide resting-state connectivity to integrate sensory information. Using optogenetic stimulation and brain-wide fMRI and resting-state fMRI (rsfMRI), we determined the large-scale effects of spatiotemporal-specific downstream propagation of hippocampal activity. Low-frequency (1 Hz), but not high-frequency (40 Hz), stimulation of dDG excitatory neurons evoked robust cortical and subcortical brain-wide fMRI responses. More importantly, it enhanced interhemispheric rsfMRI connectivity in various cortices and hippocampus. Subsequent local field potential recordings revealed an increase in slow oscillations in dorsal hippocampus and visual cortex, interhemispheric visual cortical connectivity, and hippocampal-cortical connectivity. Meanwhile, pharmacological inactivation of dDG neurons decreased interhemispheric rsfMRI connectivity. Functionally, visually evoked fMRI responses in visual regions also increased during and after low-frequency dDG stimulation. Together, our results indicate that low-frequency activity robustly propagates in the dorsal hippocampal-cortical pathway, drives interhemispheric cortical rsfMRI connectivity, and mediates visual processing.


Assuntos
Córtex Cerebral , Conectoma , Giro Denteado , Imageamento por Ressonância Magnética , Descanso/fisiologia , Animais , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Giro Denteado/diagnóstico por imagem , Giro Denteado/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
11.
Comput Math Methods Med ; 2016: 8958750, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27471545

RESUMO

Estimation of human emotions from Electroencephalogram (EEG) signals plays a vital role in affective Brain Computer Interface (BCI). The present study investigated the different event-related synchronization (ERS) and event-related desynchronization (ERD) of typical brain oscillations in processing Facial Expressions under nonattentional condition. The results show that the lower-frequency bands are mainly used to update Facial Expressions and distinguish the deviant stimuli from the standard ones, whereas the higher-frequency bands are relevant to automatically processing different Facial Expressions. Accordingly, we set up the relations between each brain oscillation and processing unattended Facial Expressions by the measures of ERD and ERS. This research first reveals the contributions of each frequency band for comprehension of Facial Expressions in preattentive stage. It also evidences that participants have emotional experience under nonattentional condition. Therefore, the user's emotional state under nonattentional condition can be recognized in real time by the ERD/ERS computation indexes of different frequency bands of brain oscillations, which can be used in affective BCI to provide the user with more natural and friendly ways.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Emoções , Expressão Facial , Oscilometria/métodos , Adulto , Algoritmos , Ritmo alfa , Artefatos , Ritmo beta , Interfaces Cérebro-Computador , Feminino , Humanos , Masculino , Reconhecimento Automatizado de Padrão , Distribuição Aleatória , Reprodutibilidade dos Testes , Fatores Sexuais , Software , Adulto Jovem
12.
PLoS One ; 10(9): e0137649, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26368570

RESUMO

Cognitive control has been extensively studied from Event-Related Potential (ERP) point of view in visual modality using Stroop paradigms. Little work has been done in auditory Stroop paradigms, and inconsistent conclusions have been reported, especially on the conflict detection stage of cognitive control. This study investigated the early ERP components in an auditory Stroop paradigm, during which participants were asked to identify the volume of spoken words and ignore the word meanings. A series of significant ERP components were revealed that distinguished incongruent and congruent trials: two declined negative polarity waves (the N1 and the N2) and three declined positive polarity wave (the P1, the P2 and the P3) over the fronto-central area for the incongruent trials. These early ERP components imply that both a perceptual stage and an identification stage exist in the auditory Stroop effect. A 3-stage cognitive control model was thus proposed for a more detailed description of the human cognitive control mechanism in the auditory Stroop tasks.


Assuntos
Percepção Auditiva/fisiologia , Cognição/fisiologia , Potenciais Evocados , Estimulação Acústica , Adulto , Limiar Auditivo/fisiologia , Encéfalo/fisiologia , Feminino , Humanos , Masculino , Modelos Teóricos , Teste de Stroop , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...