Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
J Hazard Mater ; 476: 135047, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38959833

RESUMO

Arsenic (As) is a groundwater contaminant of global concern. The degradation of dissolved organic matter (DOM) can provide a reducing environment for As release. However, the interaction of DOM with local microbial communities and how different sources and types of DOM influence the biotransformation of As in aquifers is uncertain. This study used optical spectroscopy, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), metagenomics, and structural equation modeling (SEM) to demonstrate the how the biotransformation of As in aquifers is promoted. The results indicated that the DOM in high-As groundwater is dominated by highly unsaturated low-oxygen(O) compounds that are quite humic and stable. Metagenomics analysis indicated Acinetobacter, Pseudoxanthomonas, and Pseudomonas predominate in high-As environments; these genera all contain As detoxification genes and are members of the same phylum (Proteobacteria). SEM analyses indicated the presence of Proteobacteria is positively related to highly unsaturated low-O compounds in the groundwater and conditions that promote arsenite release. The results illustrate how the biogeochemical transformation of As in groundwater systems is affected by DOM from different sources and with different characteristics.

2.
Sci Total Environ ; 943: 173776, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38862046

RESUMO

High­arsenic groundwater is influenced by a combination of processes: reductive dissolution of iron minerals and formation of secondary minerals, metal complexation and redox reactions of organic matter (OM), and formation of more migratory thioarsenate, which together can lead to significant increases in arsenic concentration in groundwater. This study was conducted in a typical sulfur- and arsenic-rich groundwater site within the Datong Basin to explore the conditions of thioarsenate formation and its influence on arsenic enrichment in groundwater using HPLC-ICPMS, hydrogeochemical modeling, and fluorescence spectroscopy. The shallow aquifer exhibited a highly reducing environment, marked by elevated sulfide levels, low concentrations of Fe(II), and the highest proportion of thioarsenate. In the middle aquifer, an optimal ∑S/∑As led to the presence of significant quantities of thioarsenate. In contrast, the deep aquifer exhibited low sulfide and high Fe(II) concentration, with arsenic primarily originating from dissolved iron minerals. Redox fluctuations in the sediment driven by sulfur­iron minerals generated reduced sulfur, thereby facilitating thioarsenate formation. OM played a crucial role as an electron donor for microbial activities, promoting iron and sulfate reduction processes and creating conditions conducive to thioarsenate formation in reduced and high­sulfur environments. Understanding the process of thioarsenate formation and the influencing factors is of paramount importance for comprehending the migration and redistribution of arsenic in groundwater systems.

3.
Mol Plant Pathol ; 25(6): e13488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924248

RESUMO

Xylanases derived from fungi, including phytopathogenic and nonpathogenic fungi, are commonly known to trigger plant immune responses. However, there is limited research on the ability of bacterial-derived xylanases to trigger plant immunity. Here, a novel xylanase named CcXyn was identified from the myxobacterium Cystobacter sp. 0969, which displays broad-spectrum activity against both phytopathogenic fungi and bacteria. CcXyn belongs to the glycoside hydrolases (GH) 11 family and shares a sequence identity of approximately 32.0%-45.0% with fungal xylanases known to trigger plant immune responses. Treatment of Nicotiana benthamiana with purified CcXyn resulted in the induction of hypersensitive response (HR) and defence responses, such as the production of reactive oxygen species (ROS) and upregulation of defence gene expression, ultimately enhancing the resistance of N. benthamiana to Phytophthora nicotianae. These findings indicated that CcXyn functions as a microbe-associated molecular pattern (MAMP) elicitor for plant immune responses, independent of its enzymatic activity. Similar to fungal xylanases, CcXyn was recognized by the NbRXEGL1 receptor on the cell membrane of N. benthamiana. Downstream signalling was shown to be independent of the BAK1 and SOBIR1 co-receptors, indicating the involvement of other co-receptors in signal transduction following CcXyn recognition in N. benthamiana. Moreover, xylanases from other myxobacteria also demonstrated the capacity to trigger plant immune responses in N. benthamiana, indicating that xylanases in myxobacteria are ubiquitous in triggering plant immune functions. This study expands the understanding of xylanases with plant immune response-inducing properties and provides a theoretical basis for potential applications of myxobacteria in biocontrol strategies against phytopathogens.


Assuntos
Nicotiana , Imunidade Vegetal , Nicotiana/microbiologia , Nicotiana/imunologia , Nicotiana/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/genética , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Environ Sci Technol ; 58(23): 10298-10308, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38817075

RESUMO

Massive soil erosion occurs in the world's Mollisol regions due to land use change and climate warming. The migration of Mollisol organic matter to river systems and subsequent changes in carbon biogeochemical flow and greenhouse gas fluxes are of global importance but little understood. By employing comparative mesocosm experiments simulating varying erosion intensity in Mollisol regions of northeastern China, this research highlights that erosion-driven export and biomineralization of terrestrial organic matter facilitates CO2 and CH4 emission from receiving rivers. Stronger Mollisol erosion, as represented by a higher soil-to-water ratio in suspensions, increased CO2 efflux, particularly for the paddy Mollisols. This is mechanistically attributable to increased bioavailability of soluble organic carbon in river water that is sourced back to destabilized organic matter, especially from the cultivated Mollisols. Concurrent changes in microbial community structure have enhanced both aerobic and anaerobic processes as reflected by the coemission of CO2 and CH4. Higher greenhouse gas effluxes from paddy Mollisol suspensions suggest that agricultural land use by supplying more nitrogen-containing, higher-free-energy organic components may have enhanced microbial respiration. These new findings highlight that Mollisol erosion is a hidden significant contributor to greenhouse gas emissions from river water, given that the world's four major Mollisol belts are all experiencing intensive cultivation.


Assuntos
Carbono , Gases de Efeito Estufa , Rios , Rios/química , Solo/química , China , Dióxido de Carbono , Metano/metabolismo
5.
Environ Int ; 188: 108758, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781702

RESUMO

Mollisols rich in natural organic matter are a significant sink of carbon (C) and selenium (Se). Climate warming and agricultural expansion to the cold Mollisol regions may enhance soil respiration and biogeochemical cycles, posing a growing risk of soil C and Se loss. Through field-mimicking incubation experiments with uncultivated and cultivated soils from the Mollisol regions of northeastern China, this research shows that soil respiration remained significant even during cold seasons and caused co-emission of greenhouse gases (CO2 and CH4) and methylated Se. Such stimulus effects were generally stronger in the cultivated soils, with maximum emission rates of 7.45 g/m2/d C and 1.42 µg/m2/d Se. For all soil types, the greatest co-emission of CO2 and dimethyl selenide occurred at 25 % soil moisture, whereas measurable CH4 emission was observed at 40 % soil moisture with higher percentages of dimethyl diselenide volatilization. Molecular characterization with three-dimensional fluorescence and ultra-high resolution mass spectrometry suggests that CO2 emission is sensitive to the availability of microbial protein-like substances and free energy from organic carbon biodegradation under variable moisture conditions. Predominant Se binding to biodegradable organic matter resulted in high dependence of Se volatilization on rates of greenhouse gas emissions. These findings together highlight the importance of dynamic organic carbon quality for soil respiration and consequent Mollisol Se loss risk, with implications for science-based management of C and Se resources in agricultural lands to combat with Se deficiency.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Metano , Selênio , Solo , Solo/química , Selênio/análise , Selênio/metabolismo , Gases de Efeito Estufa/análise , Metano/metabolismo , China , Dióxido de Carbono/análise , Microbiologia do Solo , Metilação
6.
Environ Sci Technol ; 58(22): 9840-9849, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38775339

RESUMO

The biogeochemical processes of iodine are typically coupled with organic matter (OM) and the dynamic transformation of iron (Fe) minerals in aquifer systems, which are further regulated by the association of OM with Fe minerals. However, the roles of OM in the mobility of iodine on Fe-OM associations remain poorly understood. Based on batch adsorption experiments and subsequent solid-phase characterization, we delved into the immobilization and transformation of iodate and iodide on Fe-OM associations with different C/Fe ratios under anaerobic conditions. The results indicated that the Fe-OM associations with a higher C/Fe ratio (=1) exhibited greater capacity for immobilizing iodine (∼60-80% for iodate), which was attributed to the higher affinity of iodine to OM and the significantly decreased extent of Fe(II)-catalyzed transformation caused by associated OM. The organic compounds abundant in oxygen with high unsaturation were more preferentially associated with ferrihydrite than those with poor oxygen and low unsaturation; thus, the associated OM was capable of binding with 28.1-45.4% of reactive iodine. At comparable C/Fe ratios, the mobilization of iodine and aromatic organic compounds was more susceptible in the adsorption complexes compared to the coprecipitates. These new findings contribute to a deeper understanding of iodine cycling that is controlled by Fe-OM associations in anaerobic environments.


Assuntos
Iodo , Ferro , Iodo/química , Ferro/química , Adsorção , Água Subterrânea/química , Minerais/química
7.
Phys Med Biol ; 69(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38722545

RESUMO

Objective.In this work, we aim to propose an accurate and robust spectrum estimation method by synergistically combining x-ray imaging physics with a convolutional neural network (CNN).Approach.The approach relies on transmission measurements, and the estimated spectrum is formulated as a convolutional summation of a few model spectra generated using Monte Carlo simulation. The difference between the actual and estimated projections is utilized as the loss function to train the network. We contrasted this approach with the weighted sums of model spectra approach previously proposed. Comprehensive studies were performed to demonstrate the robustness and accuracy of the proposed approach in various scenarios.Main results.The results show the desirable accuracy of the CNN-based method for spectrum estimation. The ME and NRMSE were -0.021 keV and 3.04% for 80 kVp, and 0.006 keV and 4.44% for 100 kVp, superior to the previous approach. The robustness test and experimental study also demonstrated superior performances. The CNN-based approach yielded remarkably consistent results in phantoms with various material combinations, and the CNN-based approach was robust concerning spectrum generators and calibration phantoms.Significance. We proposed a method for estimating the real spectrum by integrating a deep learning model with real imaging physics. The results demonstrated that this method was accurate and robust in estimating the spectrum, and it is potentially helpful for broad x-ray imaging tasks.


Assuntos
Método de Monte Carlo , Redes Neurais de Computação , Imagens de Fantasmas , Raios X , Processamento de Imagem Assistida por Computador/métodos
8.
Reprod Biol ; 24(2): 100883, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643607

RESUMO

Fibroblast growth factor 10 (FGF10) plays critical roles in oocyte maturation and embryonic development; however, the specific pathway by which FGF10 promotes in vitro maturation of buffalo oocytes remains elusive. The present study was aimed at investigating the mechanism underlying effects of the FGF10-mediated extracellular regulated protein kinases (ERK) pathway on oocyte maturation and embryonic development in vitro. MEK1/2 (mitogen-activated protein kinase kinase) inhibitor U0126, alone or in combination with FGF10, was added to the maturation culture medium during maturation of the cumulus oocyte complex. Morphological observations, orcein staining, apoptosis detection, and quantitative real-time PCR were performed to evaluate oocyte maturation, embryonic development, and gene expression. U0126 affected oocyte maturation and embryonic development in vitro by substantially reducing the nuclear maturation of oocytes and expansion of the cumulus while increasing the apoptosis of cumulus cells. However, it did not have a considerable effect on glucose metabolism. These findings suggest that blocking the MEK/ERK pathway is detrimental to the maturation and embryonic development potential of buffalo oocytes. Overall, FGF10 may regulate the nuclear maturation of oocytes and cumulus cell expansion and apoptosis but not glucose metabolism through the MEK/ERK pathway. Our findings indicate that FGF10 regulates resumption of meiosis and expansion and survival of cumulus cells via MEK/ERK signaling during in vitro maturation of buffalo cumulus oocyte complexes. Elucidation of the mechanism of action of FGF10 and insights into oocyte maturation should advance buffalo breeding. Further studies should examine whether enhancement of MEK/ERK signaling improves embryonic development in buffalo.


Assuntos
Búfalos , Butadienos , Fator 10 de Crescimento de Fibroblastos , Técnicas de Maturação in Vitro de Oócitos , Nitrilas , Oócitos , Animais , Búfalos/embriologia , Fator 10 de Crescimento de Fibroblastos/farmacologia , Butadienos/farmacologia , Oócitos/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Nitrilas/farmacologia , Feminino , Oogênese/efeitos dos fármacos , Células do Cúmulo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/metabolismo
9.
Sci Total Environ ; 929: 172405, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626822

RESUMO

Significant spatial variability of groundwater arsenic (As) concentrations in South/Southeast Asia is closely associated with sedimentogenesis and biogeochemical cycling processes. However, the role of fine-scale differences in biogeochemical processes under similar sedimentological environments in controlling the spatial heterogeneity of groundwater As concentrations is poorly understood. Within the central Yangtze Basin, dissolved organic matter (DOM) and microbial functional communities in the groundwater and solid-phase As-Fe speciation in Jianghan Plain (JHP) and Jiangbei Plain (JBP) were compared to reveal mechanisms related to the spatial heterogeneity of groundwater As concentration. The optical signatures of DOM showed that low molecular terrestrial fulvic-like with highly humified was predominant in the groundwater of JHP, while terrestrial humic-like and microbial humic-like with high molecular weight were predominant in the groundwater of JBP. The inorganic carbon isotope, microbial functional communities, and solid-phase As-Fe speciation suggest that the primary process controlling As accumulation in JHP groundwater system is the degradation of highly humified OM by methanogens, which drive the reductive dissolution of amorphous iron oxides. While in JBP groundwater systems, anaerobic methane-oxidizing microorganisms (AOM) coupled with fermentative bacteria, iron reduction bacteria (IRB), and sulfate reduction bacteria (SRB) utilize low molecular weight DOM degradation to drive biotic/abiotic reduction of Fe oxides, further facilitating the formation of carbonate associated Fe and crystalline Fe oxides, resulting in As release into groundwater. Different biogeochemical cycling processes determine the evolution of As-enriched aquifer systems, and the coupling of multiple processes involving organic matter transformation­iron cycling­sulfur cycling-methane cycling leads to heterogeneity in the spatial distribution of As concentrations in groundwater. These findings provide new perspectives to decipher the spatial variability of As concentrations in groundwater.


Assuntos
Arsênio , Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Arsênio/análise , Poluentes Químicos da Água/análise , China , Rios/química
10.
Sci Total Environ ; 929: 172572, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641113

RESUMO

Carbonate bound arsenic act as an important reservoir for arsenic (As) in nature aquifers. Sulfate-reducing bacteria (SRB), one of the dominant bacterial species in reductive groundwater, profoundly affects the biogeochemical cycling of As. However, whether and how SRB act on the migration and transformation of carbonate bound arsenic remains to be elucidated. Batch culture experiment was employed using filed collected arsenic bearing calcite to investigate the release and species transformation of As by SRB. We found that arsenic in the carbonate samples mostly exist as inorganic As(V) (93.92 %) and As(III). The present of SRB significantly facilitated arsenic release from carbonates with a maximum of 22.3 µg/L. The main release mechanisms of As by SRB include 1) calcite dissolution and the liberate of arsenic in calcite lattices, and 2) the break of H-bonds frees arsenic absorbed on carbonate surface. A redistribution of arsenic during culture incubation took place which may due to the precipitation of As2Sx or secondary FeAl minerals. To our best knowledge, it is the first experimental study focusing on the release of carbonate bound arsenic by SRB. This study provides new insights into the fate and transport of arsenic mediated by microorganism within high arsenic groundwater-sediment system.


Assuntos
Arsênio , Carbonatos , Água Subterrânea , Sulfatos , Poluentes Químicos da Água , Arsênio/metabolismo , Água Subterrânea/química , Água Subterrânea/microbiologia , Poluentes Químicos da Água/metabolismo , Carbonatos/metabolismo , Sulfatos/metabolismo , Bactérias/metabolismo , Carbonato de Cálcio/metabolismo , Carbonato de Cálcio/química
11.
Environ Sci Technol ; 58(18): 8032-8042, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38670935

RESUMO

Accumulation of geogenic phosphorus (P) in groundwater is an emerging environmental concern, which is closely linked to coupled processes involving FeOOH and organic matter under methanogenic conditions. However, it remains unclear how P enrichment is associated with methane cycling, particularly the anaerobic methane oxidation (AMO). This study conducted a comprehensive investigation of carbon isotopes in dissolved inorganic carbon (DIC), CO2, and CH4, alongside Fe isotopes, microbial communities, and functions in quaternary aquifers of the central Yangtze River plain. The study found that P concentrations tended to increase with Fe(II) concentrations, δ56Fe, and δ13C-DIC, suggesting P accumulation due to the reductive dissolution of FeOOH under methanogenic conditions. The positive correlations of pmoA gene abundance versus δ13C-CH4 and Fe concentrations versus δ13C-CH4, and the prevalent presence of Candidatus_Methanoperedens, jointly demonstrated the potential significance of Fe(III)-mediated AMO process (Fe-AMO) alongside traditional methanogenesis. The increase of P concentration with δ13C-CH4 value, pmoA gene abundance, and Fe concentration suggested that the Fe-AMO process facilitated P enrichment in groundwater. Redundancy analysis confirmed this assertion, identifying P concentration as the primary determinant and the cooperative influence of Fe-AMO microorganisms such as Candidatus_Methanoperedens and Geobacter on P enrichment. Our work provided new insights into P dynamics in subsurface environments.


Assuntos
Água Subterrânea , Metano , Oxirredução , Fósforo , Água Subterrânea/química , Metano/metabolismo , Fósforo/metabolismo , Anaerobiose , Compostos Férricos/metabolismo
12.
Environ Sci Technol ; 58(13): 5932-5941, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502530

RESUMO

Organoiodine compounds (OICs) are the dominant iodine species in groundwater systems. However, molecular mechanisms underlying the geochemical formation of geogenic OICs-contaminated groundwater remain unclear. Based upon multitarget field monitoring in combination with ultrahigh-resolution molecular characterization of organic components for alluvial-lacustrine aquifers, we identified a total of 939 OICs in groundwater under reducing and circumneutral pH conditions. In comparison to those in water-soluble organic matter (WSOM) in sediments, the OICs in dissolved organic matter (DOM) in groundwater typically contain fewer polycyclic aromatics and polyphenol compounds but more highly unsaturated compounds. Consequently, there were two major sources of geogenic OICs in groundwater: the migration of the OICs from aquifer sediments and abiotic reduction of iodate coupled with DOM iodination under reducing conditions. DOM iodination occurs primarily through the incorporation of reactive iodine that is generated by iodate reduction into highly unsaturated compounds, preferably containing hydrophilic functional groups as binding sites. It leads to elevation of the concentration of the OICs up to 183 µg/L in groundwater. This research provides new insights into the constraints of DOM molecular composition on the mobilization and enrichment of OICs in alluvial-lacustrine aquifers and thus improves our understanding of the genesis of geogenic iodine-contaminated groundwater systems.


Assuntos
Água Subterrânea , Iodo , Poluentes Químicos da Água , Iodatos , Poluentes Químicos da Água/análise , Água Subterrânea/química , Água , Monitoramento Ambiental
13.
Artigo em Inglês | MEDLINE | ID: mdl-38386142

RESUMO

A novel amylase AmyFlA from Flavobacterium sp. NAU1659, AmyFlA, was cloned and expressed in Esherichia coli. Based on phylogenetic and functional analysis, it was identified as a novel member of the subfamily GH13_46, sharing high sequence identity. The protein was predicted to consist of 620 amino acids, with a putative signal peptide of 25 amino acids. The enzyme was able to hydrolyze soluble starch with a specific activity of 352.97 U/mg at 50 °C in 50 mM phosphate buffer (pH 6.0). The Km and Vmax values of AmyFlA were respectively 3.15 mg/ml and 566.36 µmol·ml-1·min-1 under optimal conditions. Its activity towards starch was enhanced by 63% in the presence of 1 mM Ca2+, indicating that AmyFlA was a Ca2+-dependent amylase. Compared to the reported maltogenic amylases, AmyFlA produced a lower variety of intermediate oligosaccharides at the start of the reaction so that the product mixture contained a higher proportion of maltose. These results indicate that AmyFlA may be potential application value in the production of high-maltose syrup.

14.
J Hazard Mater ; 466: 133640, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309162

RESUMO

The environmental fate of arsenic (As) relies substantially on its speciation, which occurs frequently coupled to the redox transformation of manganese. While trivalent manganese (Mn(III)), which is known for its high reactivity, is believed to play a role in As mobilization by iron (oxyhydr)oxides in dynamic aquifers, the exact roles and underlying mechanisms are still poorly understood. Using increasingly complex batch experiments that mimick As-affected aquifer conditions in combination with time-resolved characterization, we demonstrate that Mn(III)-NOM complexes play a crucial role in the manganese-mediated immobilization of As(III) by ferrihydrite and goethite. Under anaerobic condition, Mn(III)-fulvic acid (FA) rapidly oxidized 31.8% of aqueous As(III) and bound both As(III) and As(V). Furthermore, Mn(III)-FA exerted significantly different effects on the adsorption of As by ferrihydrite and goethite. Mn(III)-FA increased the adsorption of As by 6-16% due to the higher affinity of oxidation-produced As(V) for ferrihydrite under circumneutral conditions. In contrast, As adsorption by crystalline goethite was eventually inhibited due to the competitive effect of Mn(III)-FA. To summarize, our results reveal that Mn(III)-NOM complexes play dual roles in As retention by iron oxides, depending on the their crystallization. This highlights the importance of Mn(III) for the fate of As particularly in redox fluctuating groundwater environments.

15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 225-229, 2024 Feb 10.
Artigo em Chinês | MEDLINE | ID: mdl-38311564

RESUMO

OBJECTIVE: To analyze the clinical phenotype and genetic characteristics for a child with Canavan disease. METHODS: A child who was admitted to the Children's Hospital Affiliated to Shandong University on April 9, 2021 for inability to uphold his head for 2 months and increased muscle tone for one week was subjected to whole exome sequencing, and candidate variants were verified by Sanger sequencing. RESULTS: Genetic testing revealed that the child has harbored compound heterozygous variants of the ASPA gene, including a paternally derived c.556_559dupGTTC (p. L187Rfs*5) and a maternally derived c.919delA (p. S307Vfs*24). Based on the guidelines from the American College of Medical Genetics and Genomics, both variants were predicted to be pathogenic (PVS1+PM2_Supporting+PM3). CONCLUSION: The c.556_559dupGTTC (p.L187Rfs*5) and c.919delA (p.S307Vfs*24) compound heterozygous variants of the ASPA gene probably underlay the pathogenesis of Canavan disease in this child.


Assuntos
Doença de Canavan , Criança , Humanos , Doença de Canavan/genética , Testes Genéticos , Genômica , Mutação , Fenótipo
16.
Sci Total Environ ; 916: 169893, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185173

RESUMO

Sb and As are chemically similar, but the sequences and structures of Sb(III) and As(III) oxidase are totally distinct. It is thus interesting to explore whether Sb(III) oxidase oxidizes As(III), and if so, how microbial oxidations of Sb(III) and As(III) influence one another. Previous investigations have yielded ambiguous or even erroneous conclusions. This study aimed to clarify this issue. Firstly, we prepared a consortium of Sb(III)-oxidizing prokaryotes (SOPs) by enrichment cultivation. Metagenomic analysis reveals that SOPs with the Sb(III) oxidase gene, but lacking the As(III) oxidase gene are predominant in the SOP community. Despite this, SOPs exhibit comparable Sb(III) and As(III)-oxidizing activities in both aerobic and anaerobic conditions, indicating that at the microbial community level, Sb(III) oxidase can oxidize As(III). Secondly, we isolated a representative cultivable SOP, Ralstonia sp. SbOX with Sb(III) oxidase gene but without As(III) oxidase gene. Genomic analysis of SbOX reveals that this SOP strain has a complete Sb(III) oxidase (AnoA) gene, but lacks As(III) oxidase (AioAB or ArxAB) gene. It is interesting to discover that, besides its Sb(III) oxidation activities, SbOX also exhibits significant capabilities in oxidizing As(III) under both aerobic and anaerobic conditions. Moreover, under aerobic conditions and in the presence of both Sb(III) and As(III), SbOX exhibited a preference for oxidizing Sb(III). Only after the near complete oxidation of Sb(III) did SbOX initiate rapid oxidation of As(III). In contrast, under anaerobic conditions and in the presence of both Sb(III) and As(III), Sb(III) oxidation notably inhibited the As(III) oxidation pathway in SbOX, while As(III) exhibited minimal effects on the Sb(III) oxidation. These findings suggest that SOPs can oxidize As(III) under both aerobic and anaerobic conditions, exhibiting a strong preference for Sb(III) over As(III) oxidation in the presence of both. This study unveils a novel mechanism of interaction within the Sb and As biogeochemical cycles.


Assuntos
Antimônio , Oxirredutases , Oxirredutases/metabolismo , Anaerobiose , Antimônio/metabolismo , Oxirredução , Bactérias/metabolismo
17.
Food Chem ; 442: 138401, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219570

RESUMO

Molecular docking and activity evaluation screened the dipeptide module GP with low xanthine oxidase (XOD) inhibitory activity and modules KE and KN with high activity, and identified them as low- and high-contribution modules, respectively. We hypothesized the substitution of low-contribution modules in peptides with high contributions would boost their XOD inhibitory activity. In the XOD inhibitory peptide GPAGPR, substitution of GP with both KE and KN led to enhanced affinity between the peptides and XOD. They also increased XOD inhibitory activity (26.4% and 10.3%) and decreased cellular uric acid concentrations (28.0% and 10.4%). RNA sequencing indicated that these improvements were attributable to the inhibition of uric acid biosynthesis. In addition, module substitution increased the angiotensin-converting enzyme inhibitory activity of GILRP and GAAGGAF by 84.8% and 76.5%. This study revealed that module substitution is a feasible strategy to boost peptide activity, and provided information for the optimization of hydrolysate preparation conditions.


Assuntos
Peptidil Dipeptidase A , Xantina Oxidase , Simulação de Acoplamento Molecular , Ácido Úrico , Peptídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
18.
Water Res ; 251: 121117, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219691

RESUMO

Geogenic arsenic (As)-contaminated groundwater is a sustaining global health concern that is tightly constrained by multiple interrelated biogeochemical processes. However, a complete spectrum of the biogeochemical network of high-As groundwater remains to be established, concurrently neglecting systematic zonation of groundwater biogeochemistry on the regional scale. We uncovered the geomicrobial interaction network governing As biogeochemical pathways by merging in-field hydrogeochemical monitoring, metagenomic analyses, and ultrahigh resolution mass spectrometry (FT-ICR MS) characterization of dissolved organic matter. In oxidizing to weakly reducing environments, the nitrate-reduction and sulfate-reduction encoding genes (narGHI, sat) inhibited the dissolution of As-bearing iron minerals, leading to lower As levels in groundwater. In settings from weakly to moderately reducing, high abundances of sulfate-reduction and iron-transport encoding genes boosted iron mineral dissolution and consequent As release. As it evolved to strongly reducing stage, elevated abundance of methane cycle-related genes (fae, fwd, fmd) further enhanced As mobilization in part by triggering the formation of gaseous methylarsenic. During redox cycling of N, S, Fe, C and As in groundwater, As migration to groundwater and immobilization in mineral particles are geochemically constrained by basin-scale dynamics of microbial functionality and DOM molecular composition. The study constructs a theoretical model to summarize new perspectives on the biogeochemical network of As cycling.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Poluentes Químicos da Água/análise , Água Subterrânea/química , Ferro/análise , Minerais , Sulfatos
19.
Arch Virol ; 169(2): 30, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38233704

RESUMO

We analyzed the clinical characteristics of outpatients with influenza-B-associated pneumonia during the 2021-2022 influenza season and analyzed the molecular epidemiology and evolution of influenza B virus. The presence of influenza B virus was confirmed by reverse transcription polymerase chain reaction (RT-PCR). Electronic medical records were used to collect and analyze data of outpatients. The HA and NA genes were phylogenetically analyzed using ClustalW 2.10 and MEGA 11.0. Out of 1569 outpatients who tested positive for influenza B virus, 11.7% (184/1569) developed pneumonia, and of these, 19.0% (35/184) had underlying diseases. Fever, cough, and sore throat were the most common symptoms. Among the complications, acute respiratory distress syndrome (ARDS), acute kidney injury (AKI), and shock accounted for 2.7% (5/184), 4.9% (9/184), and 1.6% (3/184), respectively. Of the outpatients, 2.7% (5/184) were admitted to the hospital, and 0.5% (1/184) of them died. All of the strains from Beijing were identified as belonging to the B/Victoria lineage. The HA and NA gene sequences of 41 influenza B viruses showed high similarity to each other, and all of them belonged to clade 1A.3. Compared with the vaccine strain B/Washington/02/2019, all of the isolates contained N150K, G181E, and S194D mutations. S194D, E195K, and K200R mutations were detected in the 190 helix of the receptor binding region of HA. Co-mutations of H122Q, A127T, P144L, N150K, G181E, S194D, and K200R in HA and D53N, N59S, and G233E in NA were detected in 78.0% (32/41) of the isolates, and 56.3% (18/32) of these were from outpatients with influenza-B-associated pneumonia. Influenza outpatients with underlying diseases were more likely to develop pneumonia. No significant differences were observed in clinical symptoms or laboratory results between outpatients with and without pneumonia, so testing for influenza virus seems to be a good choice. The observed amino acid variations suggest that current vaccines might not provide effective protection.


Assuntos
Influenza Humana , Humanos , Influenza Humana/epidemiologia , Vírus da Influenza B , Pequim , Estações do Ano , Pacientes Ambulatoriais , Evolução Molecular , Filogenia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética
20.
J Hazard Mater ; 465: 133368, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38163408

RESUMO

Urban groundwater, serving as a critical reservoir for potable water, faces susceptibility to contamination from discrete sources such as hospital wastewater. This study investigates the distribution and plausible origins of antibiotics and antibiotic resistance genes (ARGs) in urban groundwater, drawing comparisons between areas proximal to hospitals and non-hospital areas. Ofloxacin and oxytetracycline emerged as the prevalent antibiotics across all samples, with a discernibly richer array of antibiotic types observed in groundwater sourced from hospital-adjacent regions. Employing a suite of multi-indicator tracers encompassing indicator drugs, Enterococci, ammonia, and Cl/Br mass ratio, discernible pollution from hospital or domestic sewage leakage was identified in specific wells, correlating with an escalating trajectory in antibiotic contamination. Redundancy analysis underscored temperature and dissolved organic carbon as principal environmental factors influencing antibiotics distribution in groundwater. Network analysis elucidated the facilitating role of mobile genetic elements, such as int1 and tnpA-02 in propagating ARGs. Furthermore, ARGs abundance exhibited positive correlations with temperature, pH and metallic constituents (e.g., Cu, Pb, Mn and Fe) (p < 0.05). Notably, no conspicuous correlation manifested between antibiotics and ARGs. These findings accentuate the imperative of recognizing the peril posed by antibiotic contamination in groundwater proximal to hospitals and advocate for the formulation of robust prevention and control strategies to mitigate the dissemination of antibiotics and ARGs.


Assuntos
Antibacterianos , Água Subterrânea , Antibacterianos/farmacologia , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Hospitais Urbanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...