Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
1.
Toxics ; 12(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38922082

RESUMO

In this study, the degradation system of Shewanella oneidensis MR-1 and goethite was constructed with chlorpyrifos as the target contaminant. The effects of initial pH, contaminant concentration, and temperature on the removal rate of chlorpyrifos during the degradation process were investigated. The experimental conditions were optimized by response surface methodology with a Box-Behnken design (BBD). The results show that the removal rate of chlorpyrifos is 75.71% at pH = 6.86, an initial concentration of 19.18 mg·L-1, and a temperature of 30.71 °C. LC-MS/MS analyses showed that the degradation products were C4H11O3PS, C7H7Cl3NO4P, C9H11Cl2NO3PS, C7H7Cl3NO3PS, C9H11Cl3NO4P, C4H11O2PS, and C5H2Cl3NO. Presumably, the degradation pathways involved are: enzymatic degradation, hydrolysis, dealkylation, desulfur hydrolysis, and dechlorination. The findings of this study demonstrate the efficacy of the goethite/S. oneidensis MR-1 complex system in the removal of chlorpyrifos from water. Consequently, this research contributes to the establishment of a theoretical framework for the microbial remediation of organophosphorus pesticides in aqueous environments.

2.
Talanta ; 277: 126383, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38852345

RESUMO

Chemical warfare agents (CWAs) are toxic that pose a threat to the environment and human health, even trace amounts of CWAs can be fatal. In view of this, there is an urgent need to develop gas sensors for trace detection and ultrafast response of CWAs. Herein, an optical gas sensor has been proposed based on metal-organic frameworks (MOFs) three-dimensional (3D) photonic crystal to detect trace CWAs' simulant (dimethyl methylphosphonate, DMMP) in different atmospheric humidity (RH 20 %, RH 40 %, RH 60 %, RH 80 %). At relative humidity (RH) of 20 %, the sensor shows excellent selectivity of DMMP due to the specific interactions of van der Waals force between UiO-67 and phosphoryl oxygen (OP) group of DMMP (C3H9O3P), the ultrahigh sensitivity (42.7 ppb), ultrafast response (0.5 s) are profit from the ordered superstructure of 3D photonic crystal and its complete photonic bandgap. At higher humidity (RH 40%-80 %), the sensor shows excellent stability, long-term repeatability, and it still keeps ultrahigh sensitivity (12.1 ppb), ultrafast response (0.49 s) for DMMP at RH 80 %. Moreover, an optical gas sensor array has been prepared to solve the problem of cross-sensitive between DMMP and other CWAs at highest humidity (RH ≥ 80 %), the average classification accuracy can reach 98.6 %.

3.
J Mater Chem C Mater ; 12(22): 7909-7915, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38855264

RESUMO

The understanding of mixed ionic-electronic conductivity in hybrid perovskites has enabled major advances in the development of optoelectronic devices based on this class of materials. While recent investigations revealed the potential of using dimensionality effects for various applications, the implication of this strategy on mixed conductivity is yet to be established. Here, we present a systematic analysis of mixed conduction in layered (2D) hybrid halide perovskite films based on 1,4-phenylenedimethylammonium (PDMA) and benzylammonium (BzA) organic spacers in (PDMA)PbI4 and (BzA)2PbI4 compositions, forming representative Dion-Jacobson (DJ) and Ruddleson-Popper (RP) phases, respectively. Electrochemical measurements of charge transport parallel to the layered structure reveal mixed ionic-electronic conduction with electronic transport mediated by electron holes in both DJ and RP phases. In comparison to the 3D perovskites, larger activation energies for both ionic and electronic conductivities are observed which result in lower absolute values. While the layered perovskites still allow for a relatively efficient exchange of iodine with the gas phase, the lower change of conductivity on the variation of the iodine partial pressure compared with 3D perovskites is consistent with the exchange affecting only a fraction of the film, with implications for the encapsulating efficacy of these materials. We complement the analysis with a demonstration of the superior thermal stability of DJ structures compared to their RP counterparts. This can guide future explorations of dimensionality and composition to control the transport and stabilization properties of 2D perovskite films.

4.
Angew Chem Int Ed Engl ; : e202406585, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863281

RESUMO

Polymer electrolytes play a crucial role in advancing rechargeable magnesium batteries (RMBs) owing to their exceptional characteristics, including high flexibility, superior interface compatibility, broad electrochemical stability window, and enhanced safety features. Despite these advantages, research in this domain remains nascent, plagued by single preparation approaches and challenges associated with the compatibility between polymer electrolytes and Mg metal anode. In this study, we present a novel synthesis strategy to fabricate a glycerol α,α'-diallyl ether-3,6-dioxa-1,8-octanedithiol-based polymer electrolyte supported by glass fiber substrate (GDT@GF) through anion modification and thiol-ene click chemistry polymerization. The developed route exhibits novelty and high efficiency, leading to the production of GDT@GF membranes featuring exceptional mechanical properties, heightened ionic conductivity, elevated Mg2+ transference number, and commendable compatibility with Mg anode. The assembled modified Mo6S8||GDT@GF||Mg cells exhibit outstanding performance across a wide temperature range and address critical safety concerns, showcasing the potential for applications under extreme conditions. Our innovative preparation strategy offers a promising avenue for the advancement of polymer electrolytes in high-performance rechargeable magnesium batteries, while also opens up possibilities for future large-scale applications and the development of flexible electronic devices.

5.
Angew Chem Int Ed Engl ; : e202408064, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853147

RESUMO

Tumor-specific activatable long-wavelength (LW) photosensitizers (PSs) show promise in overcoming the limitations of traditional photodynamic therapy (PDT), such as systemic phototoxicity and shallow tissue penetration. However, their insufficient LW light absorption and low singlet oxygen quantum yield (F1O2) usually require high laser power density to produce thermal energy and synergistically enhance PDT. The strong photothermal radiation causing acute pain significantly reduces patient compliance and hinders the broader clinical application of LW PDT. Through the exciton dynamics dissection strategy, we have developed a series of pH-activatable cyanine-based LW PSs (LET-R, R = H, Cl, Br, I), among which the activated LET-I exhibits strong light absorption at 808 nm and a remarkable 3.2-fold enhancement in F1O2 compared to indocyanine green. Transient spectroscopic analysis and theoretical calculations confirmed its significantly promoted intersystem crossing and simultaneously enhanced LW fluorescence emission characteristics. These features enable the activatable fluorescence and photoacoustic dual-modal imaging-escorted complete photodynamic eradication of tumors by the folic acid (FA)-modified LET-I probe (LET-I-FA), under the ultralow 808 nm laser power density (0.2 W cm-2) for irradiation, without the need for photothermal energy synergy. This research presents a novel strategy of dissecting exciton dynamics to screen activatable LW PSs for traceable PDT.

6.
Adv Sci (Weinh) ; : e2401988, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829265

RESUMO

Rapid and visual detection of SARS-CoV-2 variants is vital for timely assessment of variant transmission in resource-limited settings. Here, a closed-tube, two-stage, mixed-dye-based isothermal amplification method with ribonuclease-cleavable enhanced probes (REP), termed REP-TMAP, for dual-visualization detection of SARS-CoV-2 variants including JN.1, BA.2, BA.4/5, and Delta is introduced. The first stage of REP-TMAP is reverse transcription recombinase polymerase amplification and the second stage is dual-visualization detection synergistically mediated by the REP and the mixed dyes of cresol red and hydroxy naphthol blue. In REP-TMAP reaction, the color change under ambient light indicates SARS-CoV-2 infection, while the fluorescence change under blue light excitation specifies variant type. On detecting transcribed RNA of SARS-CoV-2 spike gene, this assay is rapid (within 40 min), highly sensitive (10-200 copies per reaction), and highly specific (identification of single-base mutations). Furthermore, the assay has been clinically validated to accurately detect JN.1, BA.2, and BA.4/5 variants from 102 human oropharyngeal swabs. The proposed assay therefore holds great potentials to provide a rapid, dual-visualization, sensitive, specific, point-of-care detection of SARS-CoV-2 variants and beyond.

7.
Chemistry ; 30(37): e202401178, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38705854

RESUMO

Some nanomaterials with intrinsic protease-like activity have the advantages of good stability, biosafety, low price, large-scale preparation and unique property of nanomaterials, which are promising alternatives for natural proteases in various applications. An especial term, "nanoprotease", has been coined to stress the intrinsic proteolytic property of these nanomaterials. As a new generation of artificial proteases, they have become a burgeoning field, attracting many researchers to design and synthesize high performance nanoproteases. In this review, we summarize recent progress on all types of nanoproteases with regard of their activity, mechanism and application and introduce a new and effective strategy for engineering high-performance nanoproteases. In addition, we discuss the challenges and opportunities of nanoprotease research in the future.


Assuntos
Biotecnologia , Nanoestruturas , Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/química , Nanoestruturas/química , Engenharia de Proteínas
8.
Ann Hematol ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761184

RESUMO

Bruton's tyrosine kinase inhibitors (BTKi) exhibit superior efficacy in relapsed/refractory primary central nervous system lymphoma (PCNSL), but few studies have evaluated patients with newly diagnosed PCNSL, and even fewer studies have evaluated differences in efficacy between treatment with BTKi and traditional chemotherapy. This study retrospectively analyzed the clinical characteristics of 86 patients with PCNSL and identified predictors of poor prognosis for overall survival (OS). After excluding patients who only received palliative care, 82 patients were evaluated for efficacy and survival. According to the induction regimen, patients were divided into the traditional chemotherapy, BTKi combination therapy, and radiotherapy groups; the objective response rates (ORR) of the three groups were 71.4%, 96.2%, and 71.4% (P = 0.037), respectively. Both median progression-free survival and median duration of remission showed statistically significant differences (P = 0.019 and P = 0.030, respectively). The median OS of the BTKi-containing therapy group was also longer than that of the traditional chemotherapy group (not reached versus 47.8 (32.5-63.1) months, P = 0.038).Seventy-one patients who achieved an ORR were further analyzed, and achieved an ORR after four cycles of treatment and maintenance therapy had prolonged OS (P = 0.003 and P = 0.043, respectively). In conclusion, survival, and prognosis of patients with newly diagnosed PCNSL are influenced by the treatment regimen, with the BTKi-containing regimen showing great potential.

9.
Foods ; 13(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38790784

RESUMO

Tartronic acid is known for its potential to inhibit sugar-to-lipid conversion in the human body, leading to weight loss and fat reduction. This compound is predominantly found in cucumbers and other cucurbit crops. Therefore, cultivating cucumbers with high tartronic acid content holds significant health implications. In this study, we assessed the tartronic acid content in 52 cucumber germplasms with favorable overall traits and identified 8 cucumber germplasms with elevated tartronic acid levels. Our investigation into factors influencing cucumber tartronic acid revealed a decrease in content with fruit development from the day of flowering. Furthermore, tartronic acid content was higher in early-harvested fruits compared to late-harvested ones, with the rear part of the fruit exhibiting significantly higher content than other parts. Foliar spraying of microbial agents increased tartronic acid content by 84.4%. This study provides valuable resources for breeding high tartronic acid cucumbers and offers practical insights for optimizing cucumber production practices.

10.
Brain Inj ; : 1-10, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38711413

RESUMO

BACKGROUND: Organophosphorus pesticide poisoning can lead to severe brain damage, but the specific mechanisms involved are not fully understood. Our research aims to elucidate the function of the TRPV4 ion channel in the development of brain injury induced by paraoxon (POX). METHODS: In vivo, we examined the survival rate, behavioral seizures, histopathological alterations, NMDA receptor phosphorylation, as well as the expression of the NLRP3-ASC-caspase-1 complex and downstream inflammatory factors in the POX poisoning model following intervention with the TRPV4 antagonist GSK2193874. In vitro, we investigated the effects of GSK2193874 on NMDA-induced inward current, cell viability, cell death rate, and Ca2+ accumulation in primary hippocampal neurons. RESULTS: The treatment with the TRPV4 antagonist increased the survival rate, suppressed the status epilepticus, improved pathological damage, and reduced the phosphorylation level of NMDA receptors after POX exposure. Additionally, it inhibited the upregulation of NLRP3 inflammasome and inflammatory cytokines expression after POX exposure. Moreover, the TRPV4 antagonist corrected the NMDA-induced increase in inward current and cell death rate, decrease in cell viability, and Ca2+ accumulation. CONCLUSION: TRPV4 participates in the mechanisms of brain injury induced by POX exposure through NMDA-mediated excitotoxicity and NLRP3-mediated inflammatory response.

11.
Biosens Bioelectron ; 259: 116403, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776802

RESUMO

Robust encapsulation and controllable release of biomolecules have wide biomedical applications ranging from biosensing, drug delivery to information storage. However, conventional biomolecule encapsulation strategies have limitations in complicated operations, optical instability, and difficulty in decapsulation. Here, we report a simple, robust, and solvent-free biomolecule encapsulation strategy based on gallium liquid metal featuring low-temperature phase transition, self-healing, high hermetic sealing, and intrinsic resistance to optical damage. We sandwiched the biomolecules with the solid gallium films followed by low-temperature welding of the films for direct sealing. The gallium can not only protect DNA and enzymes from various physical and chemical damages but also allow the on-demand release of biomolecules by applying vibration to break the liquid gallium. We demonstrated that a DNA-coded image file can be recovered with up to 99.9% sequence retention after an accelerated aging test. We also showed the practical applications of the controllable release of bioreagents in a one-pot RPA-CRISPR/Cas12a reaction for SARS-COV-2 screening with a low detection limit of 10 copies within 40 min. This work may facilitate the development of robust and stimuli-responsive biomolecule capsules by using low-melting metals for biotechnology.


Assuntos
Técnicas Biossensoriais , Transição de Fase , SARS-CoV-2 , Técnicas Biossensoriais/métodos , SARS-CoV-2/isolamento & purificação , COVID-19/virologia , Gálio/química , Humanos , DNA/química , Sistemas CRISPR-Cas , Cápsulas/química
12.
RSC Adv ; 14(22): 15413-15418, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38741962

RESUMO

The urgent need to develop biocompatible, non-resistant antibacterial agents to effectively combat Gram-negative bacterial infections, particularly for the treatment of peritonitis, presents a significant challenge. In this study, we introduce our water-soluble Cu30 nanoclusters (NCs) as a potent and versatile antibacterial agent tailored for addressing peritonitis. The as-synthesized atomically precise Cu30 NCs demonstrate exceptional broad-spectrum antibacterial performance, and especially outstanding bactericidal activity of 100% against Gram-negative Escherichia coli (E. coli). Our in vivo experimental findings indicate that the Cu30 NCs exhibit remarkable therapeutic efficacy against primary peritonitis caused by E. coli infection. Specifically, the treatment leads to a profound reduction of drug-resistant bacteria in the peritoneal cavity of mice with peritonitis by more than 5 orders of magnitude, along with the resolution of pathological features in the peritoneum and spleen. Additionally, comprehensive in vivo biosafety assessment underscores the remarkable biocompatibility, low biotoxicity, as well as efficient hepatic and renal clearance of Cu30 NCs, emphasizing their potential for in vivo application. This investigation is poised to advance the development of novel Cu NC-based antibacterial agents for in vivo antibacterial treatment and the elimination of abdominal inflammation.

13.
Health Commun ; : 1-13, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600660

RESUMO

This study employed the model of stigma communication (MSC) to analyze how exposure to COVID-19-related information affected stigma-related information sharing about people who contracted COVID-19 during the pandemic and examined the cognitive process of the MSC in a collectivist culture. Based on a survey of 526 social media users during the COVID-19 pandemic in China, the study found that exposure to contact tracing information and pandemic control information had different impact on stigma-related information sharing through a series of cognitive variables. A dual-path model showed that perceived personal risk influenced stigma-related information sharing through attribution of blame toward the infected (the personal path), while perceived social risk influenced stigma-related information sharing through protection norm conformity (the social path). Compared to the personal path, the social path is more salient in shaping stigmatized attitudes and behaviors. The findings and discussions added to our understanding of the intricate stigma communication process in a collectivist culture.

14.
Cancer Med ; 13(7): e7043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572921

RESUMO

BACKGROUND: As an indicator of tumor invasiveness, microvascular invasion (MVI) is a crucial risk factor for postoperative relapse, metastasis, and unfavorable prognosis in hepatocellular carcinoma (HCC). Nevertheless, the genetic mechanisms underlying MVI, particularly for Chinese patients, remain mostly uncharted. METHODS: We applied deep targeted sequencing on 66 Chinese HCC samples. Focusing on the telomerase reverse transcriptase (TERT) promoter (TERTp) and TP53 co-mutation (TERTp+/TP53+) group, gene set enrichment analysis (GSEA) was used to explore the potential molecular mechanisms of the TERTp+/TP53+ group on tumor progression and metastasis. Additionally, we evaluated the tumor immune microenvironment of the TERTp+/TP53+ group in HCC using multiplex immunofluorescence (mIF) staining. RESULTS: Among the 66 HCC samples, the mutated genes that mostly appeared were TERT, TP53, and CTNNB1. Of note, we found 10 cases with TERTp+/TP53+, of which nine were MVI-positive and one was MVI-negative, and there was a co-occurrence of TERTp and TP53 (p < 0.05). Survival analysis demonstrated that patients with the TERTp+/TP53+ group had lower the disease-free survival (DFS) (p = 0.028). GSEA results indicated that telomere organization, telomere maintenance, DNA replication, positive regulation of cell cycle, and negative regulation of immune response were significantly enriched in the TERTp+/TP53+ group (all adjusted p-values (p.adj) < 0.05). mIF revealed that the TERTp+/TP53+ group decreased CD8+ T cells infiltration (p = 0.25) and enhanced PDL1 expression (p = 0.55). CONCLUSIONS: TERTp+/TP53+ was significantly enriched in MVI-positive patients, leading to poor prognosis for HCC patients by promoting proliferation of HCC cell and inhibiting infiltration of immune cell surrounding HCC. TERTp+/TP53+ can be utilized as a potential indicator for predicting MVI-positive patients and poor prognosis, laying a preliminary foundation for further exploration of co-mutation in HCC with MVI and clinical treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linfócitos T CD8-Positivos/patologia , Recidiva Local de Neoplasia/genética , Prognóstico , Invasividade Neoplásica/patologia , Estudos Retrospectivos , Microambiente Tumoral/genética
15.
World J Gastroenterol ; 30(9): 1224-1236, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38577190

RESUMO

BACKGROUND: As a critical early event in hepatocellular carcinogenesis, telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma (HCC) patients, and its function in the genesis and treatment of HCC has gained much attention over the past two decades. AIM: To perform a bibliometric analysis to systematically assess the current state of research on HCC-related telomerase. METHODS: The Web of Science Core Collection and PubMed were systematically searched to retrieve publications pertaining to HCC/telomerase limited to "articles" and "reviews" published in English. A total of 873 relevant publications related to HCC and telomerase were identified. We employed the Bibliometrix package in R to extract and analyze the fundamental information of the publications, such as the trends in the publications, citation counts, most prolific or influential writers, and most popular journals; to screen for keywords occurring at high frequency; and to draw collaboration and cluster analysis charts on the basis of coauthorship and co-occurrences. VOSviewer was utilized to compile and visualize the bibliometric data. RESULTS: A surge of 51 publications on HCC/telomerase research occurred in 2016, the most productive year from 1996 to 2023, accompanied by the peak citation count recorded in 2016. Up to December 2023, 35226 citations were made to all publications, an average of 46.6 citations to each paper. The United States received the most citations (n = 13531), followed by China (n = 7427) and Japan (n = 5754). In terms of national cooperation, China presented the highest centrality, its strongest bonds being to the United States and Japan. Among the 20 academic institutions with the most publications, ten came from China and the rest of Asia, though the University of Paris Cité, Public Assistance-Hospitals of Paris, and the National Institute of Health and Medical Research (INSERM) were the most prolific. As for individual contributions, Hisatomi H, Kaneko S, and Ide T were the three most prolific authors. Kaneko S ranked first by H-index, G-index, and overall publication count, while Zucman-Rossi J ranked first in citation count. The five most popular journals were the World Journal of Gastroenterology, Hepatology, Journal of Hepatology, Oncotarget, and Oncogene, while Nature Genetics, Hepatology, and Nature Reviews Disease Primers had the most citations. We extracted 2293 keywords from the publications, 120 of which appeared more than ten times. The most frequent were HCC, telomerase and human telomerase reverse transcriptase (hTERT). Keywords such as mutational landscape, TERT promoter mutations, landscape, risk, and prognosis were among the most common issues in this field in the last three years and may be topics for research in the coming years. CONCLUSION: Our bibliometric analysis provides a comprehensive overview of HCC/telomerase research and insights into promising upcoming research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Telomerase , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Oncogenes , Bibliometria
16.
Int Immunopharmacol ; 132: 111906, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593501

RESUMO

BACKGROUND: Age-related visceral obesity could contribute to the development of cardiometabolic complications. The pathogenesis of visceral fat mass accumulation during the aging process remains complex and largely unknown. Interleukin-6 (IL-6) has emerged as one of the prominent inflammaging markers which are elevated in circulation during aging. However, the precise role of IL-6 in regulating age-related visceral adipose tissue accumulation remains uncertain. RESULTS: A cross-sectional study including 77 older adults (≥65 years of age) was initially conducted. There was a significant positive association between serum IL-6 levels and visceral fat mass. We subsequently validated a modest but significant elevation in serum IL-6 levels in aged mice. Furthermore, we demonstrated that compared to wildtype control, IL-6 deficiency (IL-6 KO) significantly attenuated the accumulation of visceral adipose tissue during aging. Further metabolic characterization suggested that IL-6 deficiency resulted in improved lipid metabolism parameters and energy expenditure in aged mice. Moreover, histological examinations of adipose depots revealed that the absence of IL-6 ameliorated adipocyte hypertrophy in visceral adipose tissue of aged mice. Mechanically, the ablation of IL-6 could promote the PKA-mediated lipolysis and consequently mitigate lipid accumulation in adipose tissue in aged mice. CONCLUSION: Our findings identify a detrimental role of IL-6 during the aging process by promoting visceral adipose tissue accumulation through inhibition of lipolysis. Therefore, strategies aimed at preventing or reducing IL-6 levels may potentially ameliorate age-related obesity and improve metabolism during aging.


Assuntos
Envelhecimento , Interleucina-6 , Gordura Intra-Abdominal , Lipólise , Camundongos Knockout , Animais , Interleucina-6/metabolismo , Gordura Intra-Abdominal/metabolismo , Envelhecimento/metabolismo , Idoso , Masculino , Humanos , Camundongos , Feminino , Camundongos Endogâmicos C57BL , Estudos Transversais , Adipócitos/metabolismo
17.
World J Gastrointest Oncol ; 16(4): 1647-1659, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660668

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the leading causes of death due to its complexity, heterogeneity, rapid metastasis and easy recurrence after surgical resection. We demonstrated that combination therapy with transcatheter arterial chemoembolization (TACE), hepatic arterial infusion chemotherapy (HAIC), Epclusa, Lenvatinib and Sintilimab is useful for patients with advanced HCC. CASE SUMMARY: A 69-year-old man who was infected with hepatitis C virus (HCV) 30 years previously was admitted to the hospital with abdominal pain. Enhanced computed tomography (CT) revealed a low-density mass in the right lobe of the liver, with a volume of 12.9 cm × 9.4 cm × 15 cm, and the mass exhibited a "fast-in/fast-out" pattern, with extensive filling defect areas in the right branch of the portal vein and an alpha-fetoprotein level as high as 657 ng/mL. Therefore, he was judged to have advanced HCC. During treatment, the patient received three months of Epclusa, three TACE treatments, two HAIC treatments, three courses of sintilimab, and twenty-one months of lenvatinib. In the third month of treatment, the patient developed severe side effects and had to stop immunotherapy, and the Lenvatinib dose had to be halved. Postoperative pathological diagnosis indicated a complete response. The patient recovered well after the operation, and no tumor recurrence was found. CONCLUSION: Multidisciplinary conversion therapy for advanced enormous HCC caused by HCV infection has a significant effect. Individualized drug adjustments should be made during any treatment according to the patient's tolerance to treatment.

18.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673993

RESUMO

Cucumber (Cucumis sativus L.) is a globally prevalent and extensively cultivated vegetable whose yield is significantly influenced by various abiotic stresses, including drought, heat, and salinity. Transcription factors, such as zinc finger-homeodomain proteins (ZHDs), a plant-specific subgroup of Homeobox, play a crucial regulatory role in stress resistance. In this study, we identified 13 CsZHDs distributed across all six cucumber chromosomes except chromosome 7. Phylogenetic analysis classified these genes into five clades (ZHDI-IV and MIF) with different gene structures but similar conserved motifs. Collinearity analysis revealed that members of clades ZHD III, IV, and MIF experienced amplification through segmental duplication events. Additionally, a closer evolutionary relationship was observed between the ZHDs in Cucumis sativus (C. sativus) and Arabidopsis thaliana (A. thaliana) compared to Oryza sativa (O. sativa). Quantitative real-time PCR (qRT-PCR) analysis demonstrated the general expression of CsZHD genes across all tissues, with notable expression in leaf and flower buds. Moreover, most of the CsZHDs, particularly CsZHD9-11, exhibited varying responses to drought, heat, and salt stresses. Virus-induced gene silencing (VIGS) experiments highlighted the potential functions of CsZHD9 and CsZHD10, suggesting their positive regulation of stomatal movement and responsiveness to drought stress. In summary, these findings provide a valuable resource for future analysis of potential mechanisms underlying CsZHD genes in response to stresses.


Assuntos
Cucumis sativus , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Cucumis sativus/genética , Cucumis sativus/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética , Secas , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica
19.
Microorganisms ; 12(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674698

RESUMO

Chromium (Cr) contamination, widely present in the environment, poses a significant threat to both ecology and human health. Microbial remediation technology has become a hot topic in the field of heavy metal remediation due to its advantages, such as environmental protection, low cost, and high efficiency. This paper focused on using various characterization and analysis methods to investigate the bioreduction effect and mechanism of microorganisms on Cr(VI) under various influencing factors. The main contents and conclusions were as follows: Shewanella oneidensis MR-1 was selected as the target strain for studying its reduction of Cr(VI) at different inoculation amounts, temperatures, pH values, time intervals, etc. The results indicated that S. oneidensis MR-1 exhibited an optimal reduction effect on Cr(VI) at pH 7 and a temperature of 35 °C. Additionally, electron shuttles (ESs), including humic acid (HA) and 9,10-antraquinone-2,6-disulfonate (AQDS), were introduced into the degradation system to improve the reduction efficiency of S. oneidensis MR-1. Upon adding goethite further, S. oneidensis MR-1 significantly enhanced its reducing ability by converting Fe(III) minerals to Fe(II) and reducing Cr(VI) to Cr(III) during electron transfer.

20.
J Agric Food Chem ; 72(13): 7074-7088, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38525502

RESUMO

Acute kidney injury (AKI) is a common, multicause clinical condition that, if ignored, often progresses to chronic kidney disease (CKD) and end-stage kidney disease, with a mortality rate of 40-50%. However, there is a lack of universal treatment for AKI. Inflammation is the basic pathological change of early kidney injury, and inflammation can exacerbate AKI. Macrophages are the primary immune cells involved in the inflammatory microenvironment of kidney disease. Therefore, regulating the function of macrophages is a crucial breakthrough for the AKI intervention. Our team chemically modified pyxinol, an ocotillol-type ginsenoside, to prepare PJ16 with higher solubility and bioavailability. In vitro, using a model of macrophages stimulated by LPS, it was found that PJ16 could regulate macrophage function, including inhibiting the secretion of inflammatory factors, promoting phagocytosis, inhibiting M1 macrophages, and promoting M1 transition to the M2c macrophage. Further investigation revealed that PJ16 may shield renal tubular epithelial cells (HK-2) damaged by LPS in vitro. Based on this, PJ16 was validated in the animal model of unilateral ureteral obstruction, which showed that it improves renal function and inhibits renal tissue fibrosis by decreasing inflammatory responses, reducing macrophage inflammatory infiltration, and preferentially upregulating M2c macrophages. In conclusion, our study is the first to show that PJ16 resists AKI and fibrosis by mechanistically regulating macrophage function by modulating the phenotypic transition from M1 to M2 macrophages, mainly M2c macrophages.


Assuntos
Injúria Renal Aguda , Lipopolissacarídeos , Animais , Lipopolissacarídeos/efeitos adversos , Rim/patologia , Injúria Renal Aguda/tratamento farmacológico , Macrófagos , Inflamação/patologia , Fibrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...