Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Autophagy ; : 1-22, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899385

RESUMO

In neurons, macroautophagy/autophagy is a frequent and critical process. In the axon, autophagy begins in the axon terminal, where most nascent autophagosomes form. After formation, autophagosomes must initiate transport to exit the axon terminal and move toward the cell body via retrograde transport. During retrograde transport these autophagosomes mature through repetitive fusion events. Complete lysosomal cargo degradation occurs largely in the cell body. The precipitating events to stimulate retrograde autophagosome transport have been debated but their importance is clear: disrupting neuronal autophagy or autophagosome transport is detrimental to neuronal health and function. We have identified the HOPS complex as essential for early autophagosome maturation and consequent initiation of retrograde transport from the axon terminal. In yeast and mammalian cells, HOPS controls fusion between autophagosomes and late endosomes with lysosomes. Using zebrafish strains with loss-of-function mutations in vps18 and vps41, core components of the HOPS complex, we found that disruption of HOPS eliminates autophagosome maturation and disrupts retrograde autophagosome transport initiation from the axon terminal. We confirmed this phenotype was due to loss of HOPS complex formation using an endogenous deletion of the HOPS binding domain in Vps18. Finally, using pharmacological inhibition of lysosomal proteases, we show that initiation of autophagosome retrograde transport requires autophagosome maturation. Together, our data demonstrate that HOPS-mediated fusion events are critical for retrograde autophagosome transport initiation through promoting autophagosome maturation. This reveals critical roles for the HOPS complex in neuronal autophagy which deepens our understanding of the cellular pathology of HOPS-complex linked neurodegenerative diseases.Abbreviations: CORVET: Class C core vacuole/endosome tethering; gRNA: guide RNA; HOPS: homotypic fusion and protein sorting; pLL: posterior lateral line; Vps18: VPS18 core subunit of CORVET and HOPS complexes; Vps41: VPS41 subunit of HOPS complex.

2.
Front Oncol ; 14: 1382276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841159

RESUMO

Background: Osteosarcoma is a leading subtype of bone tumor affecting adolescents and adults. Comparative molecular characterization among different age groups, especially in pediatric, adolescents and adults, is scarce. Methods: We collected samples from 194 osteosarcoma patients, encompassing pediatric, adolescent, and adult cohorts. Genomic analyses were conducted to reveal prevalent mutations and compare molecular features in pediatric, adolescent, and adult patients. Results: Samples from 194 osteosarcoma patients across pediatric to adult ages were analyzed, revealing key mutations such as TP53, FLCN, NCOR1, and others. Children and adolescents showed more gene amplifications and HRD mutations, while adults had a greater Tumor Mutational Burden (TMB). Mutations in those over 15 were mainly in cell cycle and PI3K/mTOR pathways, while under 15s had more in cell cycle and angiogenesis with higher VEGFA, CCND3, TFEB mutations. CNV patterns varied with age: VEGFA and XPO5 amplifications more in under 25s, and CDKN2A/B deletions in over 25s. Genetic alterations in genes like MCL1 and MYC were associated with poor prognosis, with VEGFA mutations also indicating worse outcomes. 58% of patients had actionable mutations, suggesting opportunities for targeted therapies. Age-specific patterns were observed, with Multi-TKI mutations more common in younger patients and CDK4/6 inhibitor mutations in adults, highlighting the need for personalized treatment approaches in osteosarcoma. In a small group of patients with VEGFR amplification, postoperative treatment with multi-kinase inhibitors resulted in a PR in 3 of 13 cases, especially in patients under 15. A significant case involved a 13-year-old with a notable tumor size reduction achieving PR, even with other genetic alterations present in some patients with PD. Conclusion: This study delineates the molecular differences among pediatric, adolescent, and adult osteosarcoma patients at the genomic level, emphasizing the necessity for precision diagnostics and treatment strategies, and may offer novel prognostic biomarkers for patients with osteosarcoma. These findings provide a significant scientific foundation for the development of individualized treatment approaches tailored to patients of different age groups.

3.
Nano Lett ; 24(20): 6031-6037, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717626

RESUMO

Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe2 and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength. The observed circular deflections of the electron beam are consistent with simulations tracking the trajectory of the electron beam in the near field of the THz pulse. This finding offers a promising approach to enable atomically thin THz polarization control using anisotropic semimetals and defines new approaches for characterizing THz near-field optical response at far-subwavelength length scales.

4.
Heliyon ; 10(10): e31218, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813212

RESUMO

The behavior of rock pressure is a natural and inevitable phenomenon during coal seam mining, resulting in numerous casualties and equipment damage annually. The ability to predict and assess the strength of rock pressure in the coal face beforehand has become crucial in preventing rock pressure accidents. This paper took the prediction of rock pressure strength in coal face as the research object, and based on the multi-factor decision-making theory, proposed a new method for the evaluation of rock pressure strength in coal face-"dual-dimension rock pressure strength evaluation method". Initially, the rock pressure strength index IA was obtained through the application of the law of sedimentary pressure control and microseismic monitoring data. The drilling data at the exploration scale served as references. Then, based on the rock pressure control mechanism, the rock pressure strength index IB was obtained by utilizing a type of Euclidean distance formula at the coal face scale. Finally, in order to mutually correct the two rock pressure strength indices, the rock pressure strength grade matrix was employed to acquire the rock pressure strength grade of the coal face. Applying this evaluation method to the coal face, the prediction outcomes aligned with the actual situation. Therefore, this method can provide a theoretical reference for the prediction of rock pressure strength and the prevention of rock pressure accidents in alternative areas.

5.
Nat Commun ; 15(1): 4586, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811589

RESUMO

Stark effect, the electric-field analogue of magnetic Zeeman effect, is one of the celebrated phenomena in modern physics and appealing for emergent applications in electronics, optoelectronics, as well as quantum technologies. While in condensed matter it has prospered only for excitons, whether other collective excitations can display Stark effect remains elusive. Here, we report the observation of phonon Stark effect in a two-dimensional quantum system of bilayer 2H-MoS2. The longitudinal acoustic phonon red-shifts linearly with applied electric fields and can be tuned over ~1 THz, evidencing giant Stark effect of phonons. Together with many-body ab initio calculations, we uncover that the observed phonon Stark effect originates fundamentally from the strong coupling between phonons and interlayer excitons (IXs). In addition, IX-mediated electro-phonon intensity modulation up to ~1200% is discovered for infrared-active phonon A2u. Our results unveil the exotic phonon Stark effect and effective phonon engineering by IX-mediated mechanism, promising for a plethora of exciting many-body physics and potential technological innovations.

6.
Adv Mater ; 36(24): e2310944, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38470991

RESUMO

Anomalous transport of topological semimetals has generated significant interest for applications in optoelectronics, nanoscale devices, and interconnects. Understanding the origin of novel transport is crucial to engineering the desired material properties, yet their orders of magnitude higher transport than single-particle mobilities remain unexplained. This work demonstrates the dramatic mobility enhancements result from phonons primarily returning momentum to electrons due to phonon-electron dominating over phonon-phonon scattering. Proving this idea, proposed by Peierls in 1932, requires tuning electron and phonon dispersions without changing symmetry, topology, or disorder. This is achieved by combining de Haas - van Alphen (dHvA), electron transport, Raman scattering, and first-principles calculations in the topological semimetals MX2 (M = Nb, Ta and X = Ge, Si). Replacing Ge with Si brings the transport mobilities from an order magnitude larger than single particle ones to nearly balanced. This occurs without changing the crystal structure or topology and with small differences in disorder or Fermi surface. Simultaneously, Raman scattering and first-principles calculations establish phonon-electron dominated scattering only in the MGe2 compounds. Thus, this study proves that phonon-drag is crucial to the transport properties of topological semimetals and provides insight to engineer these materials further.

7.
Nat Commun ; 15(1): 2804, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555344

RESUMO

Intense laser pulses can be used to demagnetize a magnetic material on an extremely short timescale. While this ultrafast demagnetization offers the potential for new magneto-optical devices, it poses challenges in capturing coupled spin-electron and spin-lattice dynamics. In this article, we study the photoinduced ultrafast demagnetization of a prototype monolayer ferromagnet Fe3GeTe2 and resolve the three-stage demagnetization process characterized by an ultrafast and substantial demagnetization on a timescale of 100 fs, followed by light-induced coherent A1g phonon dynamics which is strongly coupled to the spin dynamics in the next 200-800 fs. In the third stage, chiral lattice vibrations driven by nonlinear phonon couplings, both in-plane and out-of-plane are produced, resulting in significant spin precession. Nonadiabatic effects are found to introduce considerable phonon hardening and suppress the spin-lattice couplings during demagnetization. Our results advance our understanding of dynamic charge-spin-lattice couplings in the ultrafast demagnetization and evidence angular momentum transfer between the phonon and spin degrees of freedom.

8.
Front Neurosci ; 18: 1361590, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406586

RESUMO

Introduction: Peripheral nerve injuries, especially those involving long-distance deficits, pose significant challenges in clinical repair. This study explores the potential of continuous microcurrent electrical nerve stimulation (cMENS) as an adjunctive strategy to promote regeneration and repair in such cases. Methods: The study initially optimized cMENS parameters and assessed its impact on Schwann cell activity, neurotrophic factor secretion, and the nerve regeneration microenvironment. Subsequently, a rat sciatic nerve defect-bridge repair model was employed to evaluate the reparative effects of cMENS as an adjuvant treatment. Functional recovery was assessed through gait analysis, motor function tests, and nerve conduction assessments. Additionally, nerve regeneration and denervated muscle atrophy were observed through histological examination. Results: The study identified a 10-day regimen of 100uA microcurrent stimulation as optimal. Evaluation focused on Schwann cell activity and the microenvironment, revealing the positive impact of cMENS on maintaining denervated Schwann cell proliferation and enhancing neurotrophic factor secretion. In the rat model of sciatic nerve defect-bridge repair, cMENS demonstrated superior effects compared to control groups, promoting motor function recovery, nerve conduction, and sensory and motor neuron regeneration. Histological examinations revealed enhanced maturation of regenerated nerve fibers and reduced denervated muscle atrophy. Discussion: While cMENS shows promise as an adjuvant treatment for long-distance nerve defects, future research should explore extended stimulation durations and potential synergies with tissue engineering grafts to improve outcomes. This study contributes comprehensive evidence supporting the efficacy of cMENS in enhancing peripheral nerve regeneration.

9.
J Transl Med ; 22(1): 211, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419085

RESUMO

BACKGROUND: Lactylation, a novel contributor to post-translational protein modifications, exhibits dysregulation across various tumors. Nevertheless, its intricate involvement in colorectal carcinoma, particularly for non-histone lactylation and its intersection with metabolism and immune evasion, remains enigmatic. METHODS: Employing immunohistochemistry on tissue microarray with clinical information and immunofluorescence on colorectal cell lines, we investigated the presence of global lactylation and its association with development and progression in colorectal cancer as well as its functional location. Leveraging the AUCell algorithm alongside correlation analysis in single-cell RNA sequencing data, as well as cox-regression and lasso-regression analysis in TCGA dataset and confirmed in GEO dataset, we identified a 23-gene signature predicting colorectal cancer prognosis. Subsequently, we analyzed the associations between the lactylation related gene risk and clinical characteristics, mutation landscapes, biological functions, immune cell infiltration, immunotherapy responses, and drug sensitivity. Core genes were further explored for deep biological insights through bioinformatics and in vitro experiments. RESULTS: Our study innovatively reveals a significant elevation of global lactylation in colorectal cancer, particularly in malignant tumors, confirming it as an independent prognostic factor for CRC. Through a comprehensive analysis integrating tumor tissue arrays, TCGA dataset, GEO dataset, combining in silico investigations and in vitro experiments, we identified a 23-gene Lactylation-Related Gene risk model capable of predicting the prognosis of colorectal cancer patients. Noteworthy variations were observed in clinical characteristics, biological functions, immune cell infiltration, immune checkpoint expression, immunotherapy responses and drug sensitivity among distinct risk groups. CONCLUSIONS: The Lactylation-Related Gene risk model exhibits significant potential for improving the management of colorectal cancer patients and enhancing therapeutic outcomes, particularly at the intersection of metabolism and immune evasion. This finding underscores the clinical relevance of global lactylation in CRC and lays the groundwork for mechanism investigation and targeted therapeutic strategies given the high lactate concentration in CRC.


Assuntos
Neoplasias Colorretais , Imunoterapia , Humanos , Prognóstico , Algoritmos , Linhagem Celular , Neoplasias Colorretais/genética , Microambiente Tumoral
10.
Bioact Mater ; 33: 572-590, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38111651

RESUMO

A central question in neural tissue engineering is how the tissue-engineered nerve (TEN) translates detailed transcriptional signals associated with peripheral nerve regeneration into meaningful biological processes. Here, we report a skin-derived precursor-induced Schwann cell (SKP-SC)-mediated chitosan/silk fibroin-fabricated tissue-engineered nerve graft (SKP-SCs-TEN) that can promote sciatic nerve regeneration and functional restoration nearly to the levels achieved by autologous nerve grafts according to behavioral, histological, and electrophysiological evidence. For achieving better effect of neuroregeneration, this is the first time to jointly apply a dynamic perfusion bioreactor and the ascorbic acid to stimulate the SKP-SCs secretion of extracellular matrix (ECM). To overcome the limitation of traditional tissue-engineered nerve grafts, jointly utilizing SKP-SCs and their ECM components were motivated by the thought of prolongating the effect of support cells and their bioactive cues that promote peripheral nerve regeneration. To further explore the regulatory model of gene expression and the related molecular mechanisms involved in tissue engineering-aided peripheral nerve regeneration, we performed a cDNA microarray analysis of gene expression profiling, a comprehensive bioinformatics analysis and a validation study on the grafted segments and dorsal root ganglia tissues. A wealth of transcriptomic and bioinformatics data has revealed complex molecular networks and orchestrated functional regulation that may be responsible for the effects of SKP-SCs-TEN on promoting peripheral nerve regeneration. Our work provides new insights into transcriptomic features and patterns of molecular regulation in nerve functional recovery aided by SKP-SCs-TEN that sheds light on the broader possibilities for novel repair strategies of peripheral nerve injury.

11.
Mol Nutr Food Res ; : e2300577, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150655

RESUMO

SCOPE: Branched chain amino acids (BCAAs) are essential amino acids and important nutrient signals for energy and protein supplementation. The study uses muscle-specific branched-chain α-keto acid dehydrogenase kinase (Bckdk) conditional knockout (cKO) mice to reveal the contribution of BCAA metabolic dysfunction to muscle wasting. METHOD AND RESULTS: Muscle-specific Bckdk-cKO mice are generated through crossbreeding of Bckdkf/f mice with Myf5Cre mice. Lewis lung cancer (LLC) tumor transplantation is used to establish the cancer cachexia model. The occurrence of cancer cachexia is accelerated in the muscle-specific Bckdk-cKO mice after bearing LLC tumor. Wasting skeletal muscle is characterized by increased protein ubiquitination degradation and impaired protein synthesis. The wasting muscle gastrocnemius is mechanized as a distinct BCAA metabolic dysfunction. Based on the atrophy phenotype resulting from BCAA metabolism dysfunction, the optimized BCAA supplementation improves the survival of cancer cachexia in muscle-specific Bckdk-cKO mice bearing LLC tumors, and improves the occurrence of cancer cachexia. The mechanism of BCAA supplementation on muscle mass preservation is based on the promotion of protein synthesis and the inhibition of protein ubiquitination degradation. CONCLUSIONS: Dysfunctional BCAA metabolism contributes to the inhibition of protein synthesis and increases protein degradation in the cancer cachexia model of muscle-specific Bckdk-cKO mice bearing LLC tumors. The reprogramming of BCAA catabolism exerts therapeutic effects by stimulating protein synthesis and inhibiting protein degradation in skeletal muscle.

12.
Phys Rev Lett ; 131(19): 196401, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38000430

RESUMO

The unexpected chiral order observed in 1T-TiSe_{2} represents an exciting area to explore chirality in condensed matter, while its microscopic mechanism remains elusive. Here, we have identified three metastable collective modes-the so-called single-q modes-in single layer TiSe_{2}, which originate from the unstable phonon eigenvectors at the zone boundary and break the threefold rotational symmetry. We show that polarized laser pulse is a unique and efficient tool to reconstruct the transient potential energy surface, so as to drive phase transitions between these states. By designing sequent layers with chiral stacking order, we propose a practical means to realize chiral charge density waves in 1T-TiSe_{2}. Further, the constructed chiral structure is predicted to exhibit circular dichroism as observed in recent experiments. These facts strongly indicate the chirality transfer from photons to the electron subsystem, meanwhile being strongly coupled to the lattice degree of freedom. Our work provides new insights into understanding and modulating chirality in quantum materials that we hope will spark further experimental investigation.

13.
J Integr Neurosci ; 22(5): 125, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37735125

RESUMO

OBJECTIVE: To identify suitable reference genes for gene expression studies in rat dorsal root ganglia (DRG) neurons. METHODS: The raw cycle threshold (Ct) values of 12 selected reference genes were obtained via quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) in neurons at different developmental stages or under different treatments. Two strategies were employed to screen the most stable reference genes: the genes were ranked according to the coefficient of biological variation and further validated using geNorm and NormFinder programs. The stable and unstable reference genes were subsequently used as internal controls to assess their effects on target gene expression. RESULTS: All reference genes showed varying degrees of fluctuation in Ct values during the growth process of neurons or after different treatments. 18S ribosomal RNA (Rn18s) and ß-actin (Actb) exhibited the most significant changes, while ubiquitin C (Ubc), hypoxanthine phosphoribosyl transferase (Hprt), and mitochondrial ribosomal protein L10 (Mrpl10) showed relatively minor changes. The most stable and unstable genes obtained by different evaluation methods varied slightly. Overall, Actb was found to be the most unstable reference gene, while Hprt was the relatively most stable reference gene. The use of unstable reference genes Actb and ankyrin repeat domain 27 (Ankrd27) as internal controls led to high variability within the control group, ultimately affecting the determination of target gene expression. In contrast, the stable reference gene Hprt had small inter-assay variation and high stability. CONCLUSIONS: Our observations indicate that Hprt is a proper endogenous reference gene for qRT-PCR analysis in rat DRG neurons and thus provides a critical molecular basis for the genetic characterization in neurological disorders.


Assuntos
Gânglios Espinais , Transcrição Reversa , Animais , Ratos , Neurônios , Reação em Cadeia da Polimerase
14.
Commun Biol ; 6(1): 977, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741882

RESUMO

Cancer cachexia is characterized by weight loss and skeletal muscle wasting. Based on the up-regulation of catabolism and down-regulation of anabolism, here we showed genetic mutation-mediated metabolic reprogramming in the progression of cancer cachexia by screening for metabolites and investigating their direct effect on muscle atrophy. Treatment with 93 µM D-2-hydroxyglutarate (D2HG) resulted in reduced myotube width and increased expression of E3 ubiquitin ligases. Isocitrate Dehydrogenase 1 (IDH1) mutant patients had higher D2HG than non-mutant patients. In the in vivo murine cancer cachexia model, mutant IDH1 in CT26 cancer cells accelerated cachexia progression and worsened overall survival. Transcriptomics and metabolomics revealed a distinct D2HG-induced metabolic imbalance. Treatment with the IDH1 inhibitor ivosidenib delayed the progression of cancer cachexia in murine GL261 glioma model and CT26 colorectal carcinoma models. These data demonstrate the contribution of IDH1 mutation mediated D2HG accumulation to the progression of cancer cachexia and highlight the individualized treatment of IDH1 mutation associated cancer cachexia.


Assuntos
Caquexia , Glioma , Humanos , Animais , Camundongos , Caquexia/genética , Caquexia/metabolismo , Atrofia Muscular/genética , Glioma/metabolismo , Fibras Musculares Esqueléticas/patologia
15.
Phys Rev Lett ; 131(6): 066401, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625067

RESUMO

Resolving the complete electron scattering dynamics mediated by coherent phonons is crucial for understanding electron-phonon couplings beyond equilibrium. Here we present a time-resolved theoretical investigation on strongly coupled ultrafast electron and phonon dynamics in monolayer WSe_{2}, with a focus on the intervalley scattering from the optically "bright" K state to "dark" Q state. We find that the strong coherent lattice vibration along the longitudinal acoustic phonon mode [LA(M)] can drastically promote K-to-Q transition on a timescale of ∼400 fs, comparable with previous experimental observation on thermal-phonon-mediated electron dynamics. Further, this coherent-phonon-driven intervalley scattering occurs in an unconventional steplike manner and further induces an electronic Rabi oscillation. By constructing a two-level model and quantitatively comparing with ab initio dynamic simulations, we uncover the critical role of nonadiabatic coupling effects. Finally, a new strategy is proposed to effectively tune the intervalley scattering rates by varying the coherent phonon amplitude, which could be realized via light-induced nonlinear phononics that we hope will spark experimental investigation.

16.
IEEE Trans Image Process ; 32: 4812-4827, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616140

RESUMO

Diagram Question Answering (DQA) aims to correctly answer questions about given diagrams, which demands an interplay of good diagram understanding and effective reasoning. However, the same appearance of objects in diagrams can express different semantics. This kind of visual semantic ambiguity problem makes it challenging to represent diagrams sufficiently for better understanding. Moreover, since there are questions about diagrams from different perspectives, it is also crucial to perform flexible and adaptive reasoning on content-rich diagrams. In this paper, we propose a Disentangled Adaptive Visual Reasoning Network for DQA, named DisAVR, to jointly optimize the dual-process of representation and reasoning. DisAVR mainly comprises three modules: improved region feature learning, question parsing, and disentangled adaptive reasoning. Specifically, the improved region feature learning module is designed to first learn robust diagram representation by integrating detail-aware patch features and semantically-explicit text features with region features. Subsequently, the question parsing module decomposes the question into three types of question guidance including region, spatial relation and semantic relation guidance to dynamically guide subsequent reasoning. Next, the disentangled adaptive reasoning module decomposes the whole reasoning process by employing three visual reasoning cells to construct a soft fully-connected multi-layer stacked routing space. These three cells in each layer reason over object regions, semantic and spatial relations in the diagram under the corresponding question guidance. Moreover, an adaptive routing mechanism is designed to flexibly explore more optimal reasoning paths for specific diagram-question pairs. Extensive experiments on three DQA datasets demonstrate the superiority of our DisAVR.

17.
Clin Transl Med ; 13(8): e1352, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37565737

RESUMO

BACKGROUND: The tumourigenesis of various cancers is influenced by epigenetic deregulation. Among 591 epigenetic regulator factors (ERFs) examined, AF9 showed significant inhibition of malignancy in colorectal cancer (CRC) based on our wound healing assays. However, the precise role of AF9 in CRC remains to be explored. METHODS: To investigate the function of AF9 in CRC, we utilised small interfering RNAs (siRNAs) to knock down the expression of 591 ERFs. Subsequently, we performed wound healing assays to evaluate cell proliferation and migration. In vitro and in vivo assays were conducted to elucidate the potential impact of AF9 in CRC. Clinical samples were analysed to assess the association between AF9 expression and CRC prognosis. Additionally, an Azoxymethane-Dextran Sodium Sulfate (AOM/DSS) induced CRC AF9IEC-/- mouse model was employed to confirm the role of AF9 in CRC. To identify the target gene of AF9, RNA-seq and coimmunoprecipitation analyses were performed. Furthermore, bioinformatics prediction was applied to identify potential miRNAs that target AF9. RESULTS: Among the 591 ERFs examined, AF9 exhibited downregulation in CRC and showed a positive correlation with prolonged survival in CRC patients. In vitro and in vivo assays proved that depletion of AF9 could promote cell proliferation, migration as well as glycolysis. Specifically, knockout of MLLT3 (AF9) in intestinal epithelial cells significantly increased tumour formation induced by AOM/DSS. We also identified miR-145 could target 3'untranslated region of AF9 to suppress AF9 expression. Loss of AF9 led to decreased expression of gluconeogenic genes, including phosphoenolpyruvate carboxykinase 2 (PCK2) and fructose 1,6-bisphosphatase 1 (FBP1), subsequently promoting glucose consumption and tumourigenesis. CONCLUSIONS: AF9 is essential for the upregulation of PCK2 and FBP1, and the disruption of the miR-145/AF9 axis may serve as a potential target for the development of CRC therapeutics.


Assuntos
Neoplasias Colorretais , MicroRNAs , Animais , Camundongos , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/patologia , Glicólise/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno/metabolismo
18.
J Exp Clin Cancer Res ; 42(1): 177, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37480104

RESUMO

Colorectal cancer liver metastasis (CRLM) is one of the leading causes of death among patients with colorectal cancer (CRC). Although immunotherapy has demonstrated encouraging outcomes in CRC, its benefits are minimal in CRLM. The complex immune landscape of the hepatic tumour microenvironment is essential for the development of a premetastatic niche and for the colonisation and metastasis of CRC cells; thus, an in-depth understanding of these mechanisms can provide effective immunotherapeutic targets for CRLM. This review summarises recent studies on the immune landscape of the tumour microenvironment of CRLM and highlights therapeutic prospects for targeting the suppressive immune microenvironment of CRLM.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Microambiente Tumoral , Neoplasias Hepáticas/terapia , Imunoterapia , Neoplasias Colorretais/terapia
19.
Phytother Res ; 37(8): 3380-3393, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37073890

RESUMO

The main features of cancer cachexia include skeletal muscle atrophy, which can significantly reduce the quality of life of patients. Clinical treatment of cancer cachexia is mainly based on nutritional therapy and physical exercise; medication only improves appetite but does not reverse the symptoms of skeletal muscle wasting. In this work, we systematically studied the underlying molecular mechanisms by which cucurbitacin IIb (CuIIb) ameliorates muscle wasting in cancer cachexia both in vitro and in vivo. CuIIb significantly ameliorated the chief features of cancer cachexia in vivo, alleviating weight loss, food intake, muscle wasting, adipose tissue depletion, and organ weight reductions. In vitro, CuIIb (10 and 20 µM) dose-dependently attenuated conditioned medium (CM)-induced C2C12 myotube atrophy. Collectively, our findings demonstrated that CuIIb prevented the upregulation of the E3 ubiquitin ligase muscle atrophy Fbox protein (MAFbx), myosin heavy chain (MyHC), and myogenin (MyoG) and impacted protein synthesis and degradation. In addition, CuIIb decreased the phosphorylation of Tyr705 in STAT3 by regulating the IL-6/STAT3/FoxO pathway to reduce skeletal muscle atrophy in cancer cachexia.


Assuntos
Caquexia , Neoplasias , Humanos , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Interleucina-6/metabolismo , Qualidade de Vida , Neoplasias/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Transdução de Sinais , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fator de Transcrição STAT3/metabolismo
20.
Int J Biol Sci ; 19(1): 331-345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36594082

RESUMO

Background: Tumor-associated macrophages (TAMs) are one of the most prominent tumor-infiltrating immune cells in the tumor microenvironment (TME) of CRC and play a vital role in the progression of CRC. BST2 was predicted to be associated with the infiltration of TAMs. However, its potential function by which CRC cells and TAMs interact with each other still needs further investigation. Methods: The target genes in CRC were selected by bioinformatics screening. The level of bone marrow stromal cell antigen 2 (BST2) in CRC cells and tissues was determined by qRT‒PCR, Western blotting, and immunohistochemistry staining. In vitro and in vivo assays were applied to clarify the function of BST2. Results: In this study, according to bioinformatics analysis, a nomogram based on the risk score (constructed by BST2 and CAV1 (caveolin-1)) and clinical features was built and displayed satisfactory prognostic value. Upregulated BST2 was significantly related to Braf mutation, dMMR/MSI-H, CMS1 subtype, and immune response and was a potential biomarker for predicting immune checkpoint blockade therapy. Silencing BST2 in CRC obviously restrained CRC progression and M2 TAM polarization. The infiltration of TAMs was positively correlated with the high expression of BST2, and depletion of TAMs alleviated the protumoural effect of BST2 in CRC in vivo. In vitro experiments revealed that a reduction in BST2 in CRC inhibited CRC proliferation and migration and also M2 polarization. Conclusion: These findings indicated that BST2 played a vital role in CRC progression and might be a predictable marker for immunotherapy.


Assuntos
Neoplasias Colorretais , Macrófagos , Humanos , Macrófagos/metabolismo , Neoplasias Colorretais/metabolismo , Biomarcadores/metabolismo , Microambiente Tumoral/genética , Antígenos CD/genética , Antígenos CD/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...