Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 608
Filtrar
1.
Enzyme Microb Technol ; 179: 110473, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38917734

RESUMO

Xylanases have broad applications in the food industry to decompose the complex carbohydrate xylan. This is applicable to enhance juice clarity, improve dough softness, or reduce beer turbidity. It can also be used to produce prebiotics and increase the nutritional value in foodstuff. However, the low yield and poor stability of most natural xylanases hinders their further applications. Therefore, it is imperative to explore higher-quality xylanases to address the potential challenges that appear in the food industry and to comprehensively improve the production, modification, and utilization of xylanases. Xylanases, due to their various sources, exhibit diverse characteristics that affect production and activity. Most fungi are suitable for solid-state fermentation to produce xylanases, but in liquid fermentation, microbial metabolism is more vigorous, resulting in higher yield. Fungi produce higher xylanase activity, but bacterial xylanases perform better than fungal ones under certain extreme conditions (high temperature, extreme pH). Gene and protein engineering technology helps to improve the production efficiency of xylanases and enhances their thermal stability and catalytic properties.

2.
mSystems ; : e0130123, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899930

RESUMO

Platinum-based chemotherapy failure represents a significant challenge in the management of ovarian cancer (OC) and contributes to disease recurrence and poor prognosis. Recent studies have shed light on the involvement of the gut microbiota in modulating anticancer treatments. However, the precise underlying mechanisms, by which gut microbiota regulates the response to platinum-based therapy, remain unclear. Here, we investigated the role of gut microbiota on the anticancer response of cisplatin and its underlying mechanisms. Our results demonstrate a substantial improvement in the anticancer efficacy of cisplatin following antibiotic-induced perturbation of the gut microbiota in OC-bearing mice. 16S rRNA sequencing showed a pronounced alteration in the composition of the gut microbiome in the cecum contents following exposure to cisplatin. Through metabolomic analysis, we identified distinct metabolic profiles in the antibiotic-treated group, with a notable enrichment of the gut-derived metabolite 3-methylxanthine in antibiotic-treated mice. Next, we employed a strategy combining transcriptome analysis and chemical-protein interaction network databases. We identified metabolites that shared structural similarity with 3-methylxanthine, which interacted with genes enriched in cancer-related pathways. It is identified that 3-methylxanthinesignificantly enhances the effectiveness of cisplatin by promoting apoptosis both in vivo and in vitro. Importantly, through integrative multiomics analyses, we elucidated the mechanistic basis of this enhanced apoptosis, revealing a dopamine receptor D1-dependent pathway mediated by 3-methylxanthine. This study elucidated the mechanism by which gut-derived metabolite 3-methylxanthine mediated cisplatin-induced apoptosis. Our findings highlight the potential translational significance of 3-methylxanthine as a promising adjuvant in conjunction with cisplatin, aiming to improve treatment outcomes for OC patients.IMPORTANCEThe precise correlation between the gut microbiota and the anticancer effect of cisplatin in OC remains inadequately understood. Our investigation has revealed that manipulation of the gut microbiota via the administration of antibiotics amplifies the efficacy of cisplatin through the facilitation of apoptosis in OC-bearing mice. Metabolomic analysis has demonstrated that the cecum content from antibiotic-treated mice exhibits an increase in the levels of 3-methylxanthine, which has been shown to potentially enhance the therapeutic effectiveness of cisplatin by an integrated multiomic analysis. This enhancement appears to be attributable to the promotion of cisplatin-induced apoptosis, with 3-methylxanthine potentially exerting its influence via the dopamine receptor D1-dependent pathway. These findings significantly contribute to our comprehension of the impact of the gut microbiota on the anticancer therapy in OC. Notably, the involvement of 3-methylxanthine suggests its prospective utility as a supplementary component for augmenting treatment outcomes in patients afflicted with ovarian cancer.

3.
ACS Omega ; 9(22): 23390-23399, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38854535

RESUMO

The Sichuan Basin in southern China is well-known for its large natural gas resource potential stored in Sinian-Cambrian systems. Recently, high-yield industrial gas flow has been discovered from the Dengying Formation (Sinian System) and Canglangpu Formation (Cambrian System) in the Penglai gas area, preluding the multilayer stereoscopic exploration in Sichuan Basin. However, the origin of the natural gas and its preserving mechanics is still debated, and thus, in this study the geochemical characteristics of the natural gas are systematically analyzed, based on the data from gas composition and hydrocarbon isotope of a series of local wells. On this basis, the geochemical characteristics of natural gas in different regions and layers are compared, and the reasons for these differences from the origin and influencing factors are analyzed. The results show the following: (1) The natural gas of the Penglai gas field is dry gas dominated by CH4, and the Sinian Dengying Formation gas has lower C2H6 content, larger dryness coefficient, heavier δ13C, and lighter δ2HCH4 than the Cambrian gas, which is associated with the high proportion of hydrocarbons from the high-maturity Dengying source rocks. (2) The natural gas from some wells in the lower part of the structure is characterized by high H2S content and low CH4 content, and heavy δ13C in the components, which seems to be affected by the thermochemical sulfate reduction (TSR) effect. (3) The natural gas from the Penglai gas area has a relatively low maturity, which appears to be attributed to the continuous sealing ability of the caprock, which can preserve both the early generated gas and the late thermal-cracked gas.

4.
PLoS One ; 19(6): e0305078, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843158

RESUMO

The construction of enterprise digitization serves as a "gateway" for the integration of the digital and real economies. As enterprises undergo robust digital transformations, it becomes crucial to delineate the pathway from enterprise digitization level to value creation and realization in order to maximize enterprise value. We select sample data from Chinese A-share listed companies from 2015 to 2021 as the research subject. Based on the fixed-effects model, we empirically test the impact of enterprise digitization level on both value creation and realization, as well as the mediating mechanism of entrepreneurship and internal control within it. The results indicate that the enterprise digitization level significantly enhances both value creation and realization. However, significant differences exist in the impact of the digitization level on value creation and realization among enterprises with different technological attributes and at different stages of the lifecycle. Further mechanism tests demonstrate that the "breakthrough-based" entrepreneurship and "compliance-based" internal control quality play effective mediating roles between enterprise digitization level and enterprise value. This study provides a new perspective for understanding the value creation and realization process in the digital context, and offers relevant insights for further stimulating and guiding enterprises of different types and stages to drive value enhancement with digital capabilities, thereby facilitating the deep integration of the digital with the real economy.


Assuntos
Empreendedorismo , Humanos , China , Comércio
5.
Immunity ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38889716

RESUMO

Expression of the transcriptional regulator ZFP318 is induced in germinal center (GC)-exiting memory B cell precursors and memory B cells (MBCs). Using a conditional ZFP318 fluorescence reporter that also enables ablation of ZFP318-expressing cells, we found that ZFP318-expressing MBCs were highly enriched with GC-derived cells. Although ZFP318-expressing MBCs constituted only a minority of the antigen-specific MBC compartment, their ablation severely impaired recall responses. Deletion of Zfp318 did not alter the magnitude of primary responses but markedly reduced MBC participation in recall. CD40 ligation promoted Zfp318 expression, whereas B cell receptor (BCR) signaling was inhibitory. Enforced ZFP318 expression enhanced recall performance of MBCs that otherwise responded poorly. ZFP318-deficient MBCs expressed less mitochondrial genes, had structurally compromised mitochondria, and were susceptible to reactivation-induced cell death. The abundance of ZFP318-expressing MBCs, instead of the number of antigen-specific MBCs, correlated with the potency of prime-boost vaccination. Therefore, ZFP318 controls the MBC recallability and represents a quality checkpoint of humoral immune memory.

6.
Blood Purif ; : 1-12, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740012

RESUMO

BACKGROUND: Blood purification therapy for patients overloaded with metabolic toxins or drugs still needs improvement. Blood purification therapies, such as in hemodialysis or peritoneal dialysis can profit from a combined application with nanoparticles. SUMMARY: In this review, the published literature is analyzed with respect to nanomaterials that have been customized and functionalized as nano-adsorbents during blood purification therapy. Liposomes possess a distinct combined structure composed of a hydrophobic lipid bilayer and a hydrophilic core. The liposomes which have enzymes in their aqueous core or obtain specific surface modifications of the lipid bilayer can offer appreciated advantages. Preclinical and clinical experiments with such modified liposomes show that they are highly efficient and generally safe. They may serve as indirect and direct adsorption materials both in hemodialysis and peritoneal dialysis treatment for patients with renal or hepatic failure. Apart from dialysis, nanoparticles made of specially designed metal and activated carbon have also been utilized to enhance the removal of solutes during hemoadsorption. Results are a superior adsorption capacity and good hemocompatibility shown during the treatment of patients with toxication or end-stage renal disease. In summary, nanomaterials are promising tools for improving the treatment efficacy of organ failure or toxication. KEY MESSAGES: (i) The pH-transmembrane liposomes and enzyme-loaded liposomes are two representatives of liposomes with modified aqueous inner core which have been put into practice in dialysis. (ii) Unmodified or physiochemically modified liposomal bilayers are ideal binders for lipophilic protein-bound uremic toxins or cholestatic solutes, thus liposome-supported dialysis could become the next-generation hemodialysis treatment of artificial liver support system. (iii) Novel nano-based sorbents featuring large surface area, high adsorption capacity and decent biocompatibility have shown promise in the treatment of uremia, hyperbilirubinemia, intoxication, and sepsis. (vi) A major challenge of production lies in avoiding changes in physical and chemical properties induced by manufacturing and sterilizing procedures.

7.
Langmuir ; 40(20): 10759-10768, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38712734

RESUMO

Bouncing dynamics of a trailing drop off-center impacting a leading drop with varying time intervals and Weber numbers are investigated experimentally. Whether the trailing drop impacts during the spreading or receding process of the leading drop is determined by the time interval. For a short time interval of 0.15 ≤ Δt* ≤ 0.66, the trailing drop impacts during the spreading of the leading drop, and the drops completely coalesce and rebound; for a large time interval of 0.66 < Δt* ≤ 2.21, the trailing drop impacts during the receding process, and the drops partially coalesce and rebound. Whether the trailing drop directly impacts the surface or the liquid film of the leading drop is determined by the Weber number. The trailing drop impacts the surface directly at moderate Weber numbers of 16.22 ≤ We ≤ 45.42, while it impacts the liquid film at large Weber numbers of 45.42 < We ≤ 64.88. Intriguingly, when the trailing drop impacts the surface directly or the receding liquid film, the contact time increases linearly with the time interval but independent of the Weber number; when the trailing drop impacts the spreading liquid film, the contact time suddenly increases, showing that the force of the liquid film of the leading drop inhibits the receding of the trailing drop. Finally, a theoretical model of the contact time for the drops is established, which is suitable for different impact scenarios of the successive off-center impact. This study provides a quantitative relationship to calculate the contact time of drops successively impacting a superhydrophobic surface, facilitating the design of anti-icing surfaces.

8.
Cell Genom ; 4(6): 100559, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38740021

RESUMO

The gut microbiome displays genetic differences among populations, and characterization of the genomic landscape of the gut microbiome in China remains limited. Here, we present the Chinese Gut Microbial Reference (CGMR) set, comprising 101,060 high-quality metagenomic assembled genomes (MAGs) of 3,707 nonredundant species from 3,234 fecal samples across primarily rural Chinese locations, 1,376 live isolates mainly from lactic acid bacteria, and 987 novel species relative to worldwide databases. We observed region-specific coexisting MAGs and MAGs with probiotic and cardiometabolic functionalities. Preliminary mouse experiments suggest a probiotic effect of two Faecalibacillus intestinalis isolates in alleviating constipation, cardiometabolic influences of three Bacteroides fragilis_A isolates in obesity, and isolates from the genera Parabacteroides and Lactobacillus in host lipid metabolism. Our study expands the current microbial genomes with paired isolates and demonstrates potential host effects, contributing to the mechanistic understanding of host-microbe interactions.


Assuntos
Microbioma Gastrointestinal , Probióticos , Microbioma Gastrointestinal/genética , China , Animais , Humanos , Camundongos , Masculino , Feminino , Genoma Bacteriano/genética , Genoma Microbiano , Fezes/microbiologia , Obesidade/microbiologia , Adulto , Camundongos Endogâmicos C57BL
9.
J Agric Food Chem ; 72(21): 11854-11870, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743017

RESUMO

The critical role of oxidative stress in Alzheimer's disease (AD) has been recognized by researchers recently, and natural antioxidants have been demonstrated to have anti-AD activity in animal models, such as Ginkgo biloba extract, soy isoflavones, lycopene, and so on. This paper summarized these natural antioxidants and points out that natural antioxidants always have multiple advantages which are help to deal with AD, such as clearing free radicals, regulating signal transduction, protecting mitochondrial function, and synaptic plasticity. Based on the available data, we have created a relatively complete pathway map of reactive oxygen species (ROS) and AD-related targets and concluded that oxidative stress caused by ROS is the core of AD pathogenesis. In the prospect, we introduced the concept of a combined therapeutic strategy, termed "Antioxidant-Promoting Synaptic Remodeling," highlighting the integration of antioxidant interventions with synaptic remodeling approaches as a novel avenue for therapeutic exploration.


Assuntos
Doença de Alzheimer , Antioxidantes , Ginkgo biloba , Estresse Oxidativo , Extratos Vegetais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Antioxidantes/farmacologia , Humanos , Animais , Estresse Oxidativo/efeitos dos fármacos , Ginkgo biloba/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo
10.
J Transl Med ; 22(1): 506, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802952

RESUMO

Cancer cachexia (CC) is a debilitating syndrome that affects 50-80% of cancer patients, varying in incidence by cancer type and significantly diminishing their quality of life. This multifactorial syndrome is characterized by muscle and fat loss, systemic inflammation, and metabolic imbalance. Extracellular vesicles (EVs), including exosomes and microvesicles, play a crucial role in the progression of CC. These vesicles, produced by cancer cells and others within the tumor environment, facilitate intercellular communication by transferring proteins, lipids, and nucleic acids. A comprehensive review of the literature from databases such as PubMed, Scopus, and Web of Science reveals insights into the formation, release, and uptake of EVs in CC, underscoring their potential as diagnostic and prognostic biomarkers. The review also explores therapeutic strategies targeting EVs, which include modifying their release and content, utilizing them for drug delivery, genetically altering their contents, and inhibiting key cachexia pathways. Understanding the role of EVs in CC opens new avenues for diagnostic and therapeutic approaches, potentially mitigating the syndrome's impact on patient survival and quality of life.


Assuntos
Caquexia , Vesículas Extracelulares , Neoplasias , Humanos , Caquexia/metabolismo , Caquexia/etiologia , Caquexia/terapia , Vesículas Extracelulares/metabolismo , Neoplasias/complicações , Neoplasias/patologia , Neoplasias/metabolismo , Animais
11.
ACS Nano ; 18(22): 14496-14506, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38771969

RESUMO

Hydrogen obtained from electrochemical water splitting is the most promising clean energy carrier, which is hindered by the sluggish kinetics of the oxygen evolution reaction (OER). Thus, the development of an efficient OER electrocatalyst using nonprecious 3d transition elements is desirable. Multielement synergistic effect and lattice oxygen oxidation are two well-known mechanisms to enhance the OER activity of catalysts. The latter is generally related to the high valence state of 3d transition elements leading to structural destabilization under the OER condition. We have found that Al doping in nanosheet Ni-Fe hydroxide exhibits 2-fold advantage: (1) a strong enhanced OER activity from 277 mV to 238 mV at 10 mA cm-2 as the Ni valence state increases from Ni3.58+ to Ni3.79+ observed from in situ X-ray absorption spectra. (2) Operational stability is strengthened, while weakness is expected since the increased NiIV content with 3d8L2 (L denotes O 2p hole) would lead to structural instability. This contradiction is attributed to a reduced lattice oxygen contribution to the OER upon Al doping, as verified through in situ Raman spectroscopy, while the enhanced OER activity is interpreted as an enormous gain in exchange energy of FeIV-NiIV, facilitated by their intersite hopping. This study reveals a mechanism of Fe-Ni synergy effect to enhance OER activity and simultaneously to strengthen operational stability by suppressing the contribution of lattice oxygen.

12.
Chin Med J (Engl) ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711358

RESUMO

BACKGROUND: Molecular subtyping is an essential complementarity after pathological analyses for targeted therapy. This study aimed to investigate the consistency of next-generation sequencing (NGS) results between circulating tumor DNA (ctDNA)-based and tissue-based in non-small cell lung cancer (NSCLC) and identify the patient characteristics that favor ctDNA testing. METHODS: Patients who diagnosed with NSCLC and received both ctDNA- and cancer tissue-based NGS before surgery or systemic treatment in Lung Cancer Center, Sichuan University West China Hospital between December 2017 and August 2022 were enrolled. A 425-cancer panel with a HiSeq 4000 NGS platform was used for NGS. The unweighted Cohen's kappa coefficient was employed to discriminate the high-concordance group from the low-concordance group with a cutoff value of 0.6. Six machine learning models were used to identify patient characteristics that relate to high concordance between ctDNA-based and tissue-based NGS. RESULTS: A total of 85 patients were enrolled, of which 22.4% (19/85) had stage III disease and 56.5% had stage IV disease. Forty-four patients (51.8%) showed consistent gene mutation types between ctDNA-based and tissue-based NGS, while one patient (1.2%) tested negative in both approaches. Advanced diseases and metastases to other organs would be fit for the ctDNA-based NGS, and the generalized linear model showed that T stage, M stage, and tumor mutation burden were the critical discriminators to predict the consistency of results between ctDNA-based and tissue-based NGS. CONCLUSION: ctDNA-based NGS showed comparable detection performance in the targeted gene mutations compared with tissue-based NGS, and it could be considered in advanced or metastatic NSCLC.

13.
Front Neurorobot ; 18: 1396979, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716348

RESUMO

With the fast development of large-scale Photovoltaic (PV) plants, the automatic PV fault identification and positioning have become an important task for the PV intelligent systems, aiming to guarantee the safety, reliability, and productivity of large-scale PV plants. In this paper, we propose a residual learning-based robotic (UAV) image analysis model for low-voltage distributed PV fault identification and positioning. In our target scenario, the unmanned aerial vehicles (UAVs) are deployed to acquire moving images of low-voltage distributed PV power plants. To get desired robustness and accuracy of PV image detection, we integrate residual learning with attention mechanism into the UAV image analysis model based on you only look once v4 (YOLOv4) network. Then, we design the sophisticated multi-scale spatial pyramid fusion and use it to optimize the YOLOv4 network for the nuanced task of fault localization within PV arrays, where the Complete-IOU loss is incorporated in the predictive modeling phase, significantly enhancing the accuracy and efficiency of fault detection. A series of experimental comparisons in terms of the accuracy of fault positioning are conducted, and the experimental results verify the feasibility and effectiveness of the proposed model in dealing with the safety and reliability maintenance of low-voltage distributed PV systems.

14.
Heliyon ; 10(8): e29529, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699755

RESUMO

Background: Reliable predictors for rehabilitation outcomes in patients with congenital sensorineural hearing loss (CSNHL) after cochlear implantation (CI) are lacking. The purchase of this study was to develop a nomogram based on clinical characteristics and neuroimaging features to predict the outcome in children with CSNHL after CI. Methods: Children with CSNHL prior to CI surgery and children with normal hearing were enrolled into the study. Clinical data, high resolution computed tomography (HRCT) for ototemporal bone, conventional brain MRI for structural analysis and brain resting-state fMRI (rs-fMRI) for the power spectrum assessment were assessed. A nomogram combining both clinical and imaging data was constructed using multivariate logistic regression analysis. Model performance was evaluated and validated using bootstrap resampling. Results: The final cohort consisted of 72 children with CSNHL (41 children with poor outcome and 31 children with good outcome) and 32 healthy controls. The white matter lesion from structural assessment and six power spectrum parameters from rs-fMRI, including Power4, Power13, Power14, Power19, Power23 and Power25 were used to build the nomogram. The area under the receiver operating characteristic (ROC) curve of the nomogram obtained using the bootstrapping method was 0.812 (95 % CI = 0.772-0.836). The calibration curve showed no statistical difference between the predicted value and the actual value, indicating a robust performance of the nomogram. The clinical decision analysis curve showed a high clinical value of this model. Conclusions: The nomogram constructed with clinical data, and neuroimaging features encompassing ototemporal bone measurements, white matter lesion values from structural brain MRI and power spectrum data from rs-fMRI showed a robust performance in predicting outcome of hearing rehabilitation in children with CSNHL after CI.

15.
Sci Adv ; 10(20): eadl3511, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748808

RESUMO

Cervical cancer, primarily squamous cell carcinoma, is the most prevalent gynecologic malignancy. Organoids can mimic tumor development in vitro, but current Matrigel inaccurately replicates the tissue-specific microenvironment. This limitation compromises the accurate representation of tumor heterogeneity. We collected para-cancerous cervical tissues from patients diagnosed with cervical squamous cell carcinoma (CSCC) and prepared uterine cervix extracellular matrix (UCEM) hydrogels. Proteomic analysis of UCEM identified several tissue-specific signaling pathways including human papillomavirus, phosphatidylinositol 3-kinase-AKT, and extracellular matrix receptor. Secreted proteins like FLNA, MYH9, HSPA8, and EEF1A1 were present, indicating UCEM successfully maintained cervical proteins. UCEM provided a tailored microenvironment for CSCC organoids, enabling formation and growth while preserving tumorigenic potential. RNA sequencing showed UCEM-organoids exhibited greater similarity to native CSCC and reflected tumor heterogeneity by exhibiting CSCC-associated signaling pathways including virus protein-cytokine, nuclear factor κB, tumor necrosis factor, and oncogenes EGR1, FPR1, and IFI6. Moreover, UCEM-organoids developed chemotherapy resistance. Our research provides insights into advanced organoid technology through native matrix hydrogels.


Assuntos
Carcinoma de Células Escamosas , Matriz Extracelular , Hidrogéis , Organoides , Neoplasias do Colo do Útero , Humanos , Feminino , Organoides/metabolismo , Organoides/patologia , Organoides/efeitos dos fármacos , Matriz Extracelular/metabolismo , Hidrogéis/química , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Colo do Útero/patologia , Colo do Útero/metabolismo , Microambiente Tumoral , Transdução de Sinais , Animais , Proteômica/métodos , Camundongos
16.
Angew Chem Int Ed Engl ; 63(25): e202405863, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38589298

RESUMO

Cascade radical cyclization constitutes an atom- and step-economic route for rapid assembly of polycyclic molecular skeletons. Although an array of redox-active metal catalysts has recently shown robust applications in enabling various catalytic cascade radical processes, the use of free organic radical as the catalyst, which is capable of triggering strategically distinct cascades, has rarely been developed. Here, we disclosed that the benzimidazolium-based N-heterocyclic carbene (NHC)-boryl radical is capable of catalyzing cascade cyclization reactions in both intra- and intermolecular pathways, assembling [5,5] fused bicyclic and [6,6,6] fused tricyclic molecules, respectively. The catalytic reactions start with the chemo- and regioselective addition of the boryl radical catalyst to a tethered alkene or alkyne moiety, followed by either an intramolecular formal [3+2] or an intermolecular [2+2+2] cycloaddition process to construct bicyclo[3.3.0]octane or tetrahydrophenanthridine skeletons, respectively. Eventually, a ß-elimination occurs to release the boryl radical catalyst, completing a catalytic cycle. High to excellent diastereoselectivity is achieved in both catalytic reactions under substrate control.

17.
Plants (Basel) ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38592774

RESUMO

Grain yield in rice is a complex trait and it is controlled by a number of quantitative trait loci (QTL). To dissect the genetic basis of rice yield, QTL analysis for nine yield traits was performed using an F2 population containing 190 plants, which was developed from a cross between Youyidao (YYD) and Sanfenhe (SFH), and each plant in the population evaluated with respect to nine yield traits. In this study, the correlations among the nine yield traits were analyzed. The grain yield per plant positively correlated with six yield traits, except for grain length and grain width, and showed the highest correlation coefficient of 0.98 with the number of filled grains per plant. A genetic map containing 133 DNA markers was constructed and it spanned 1831.7 cM throughout 12 chromosomes. A total of 36 QTLs for the yield traits were detected on nine chromosomes, except for the remaining chromosomes 5, 8, and 9. The phenotypic variation was explained by a single QTL that ranged from 6.19% to 36.01%. Furthermore, a major QTL for grain width and weight, qGW2-1, was confirmed to be newly identified and was narrowed down to a relatively smaller interval of about ~2.94-Mb. Collectively, we detected a total of 36 QTLs for yield traits and a major QTL, qGW2-1, was confirmed to control grain weight and width, which laid the foundation for further map-based cloning and molecular design breeding in rice.

18.
Asian J Surg ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38609822

RESUMO

INTRODUCTION: Pulmonary metastasectomy has been clarified in improving long-term survival in most primary malignancies with pulmonary metastasis, while the role of additional lymph node dissection remained controversial. We aimed to investigate the prognosis of lymph node involvement and identify the role of lymph node dissection during pulmonary metastasectomy in a real-world cohort. METHODS: We identified patients diagnosed with pulmonary metastases with ≤3 cm in size and received pulmonary metastasectomy between 2004 and 2017 in the Surveillance, Epidemiology, and End Results database. We compared the survival via Kaplan-Meier analysis and propensity score matching method, and the multivariable analysis was conducted by cox regression analysis. RESULTS: A total of 3452 patients were included, of which 2268(65.7%) received lymph node dissection, and the incidence of node-positive was 11.3%(256/2268). In total, the median overall survival was 62.8 months(interquartile range, 28.6-118.9 months), and the lymph node involvement was referred to an impaired survival compared to node-negative diseases(5-year overall survival rate, 58.0% versus 38.6%), with comparable survival between N1 and N2 diseases(P = 0.774). Lymph node dissection was associated with improved survival(HR = 0.80; 95%CI, 0.71-0.90; P < 0.001), and the survival benefits remained regardless of age, sex, the number of metastases, and surgical procedures, even in those with node-negative diseases. At least eight LNDs might lead to a significant improvement in survival, and additional survival benefits might be limited with additional dissected lymph nodes. CONCLUSIONS: Lymph node involvement was associated with impaired survival, and lymph node dissection during pulmonary metastasectomy could improve long-term survival and more accurate staging.

19.
World J Gastrointest Oncol ; 16(4): 1154-1165, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660633

RESUMO

Minimally invasive surgery is a kind of surgical operation, which is performed by using professional surgical instruments and equipment to inactivate, resect, repair or reconstruct the pathological changes, deformities and wounds in human body through micro-trauma or micro-approach, in order to achieve the goal of treatment, its surgical effect is equivalent to the traditional open surgery, while avoiding the morbidity of conventional surgical wounds. In addition, it also has the advantages of less trauma, less blood loss during operation, less psychological burden and quick recovery on patients, and these minimally invasive techniques provide unique value for the examination and treatment of gastric cancer patients. Surgical minimally invasive surgical techniques have developed rapidly and offer numerous options for the treatment of early gastric cancer (EGC): endoscopic mucosal resection (EMR), underwater EMR (UEMR), endoscopic submucosal dissection (ESD), endoscopic full-thickness resection (EFTR), endoscopic submucosal excavation (ESE), submucosal tunnel endoscopic resection), laparoscopic and endoscopic cooperative surgery (LECS); Among them, EMR, EFTR and LECS technologies have a wide range of applications and different modifications have been derived from their respective surgical operations, such as band-assisted EMR (BA-EMR), conventional EMR (CEMR), over-the-scope clip-assisted EFTR, no-touch EFTR, the inverted LECS, closed LECS, and so on. These new and improved minimally invasive surgeries are more precise, specific and effective in treating different types of EGC.

20.
Plants (Basel) ; 13(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674540

RESUMO

Anther length is the critical floral trait determining hybrid rice seed production and is controlled by many quantitative trait loci (QTL). However, the cloning of genes specifically controlling anther size has yet to be reported. Here, we report the fine mapping of qAL5.2 for anther size using backcross inbred lines (BILs) in the genetic background of Oryza sativa indica Huazhan (HZ). Gene chip analysis on the BC4F2 and BC5F1 population identified effective loci on Chr1, Chr5, and Chr8 and two genomic regions on Chr5, named qAL5.1 and qAL5.2. qAL5.2 was identified in both populations with LOD values of 17.54 and 10.19, which explained 35.73% and 25.1% of the phenotypic variances, respectively. Ultimately qAL5.2 was localized to a 73 kb region between HK139 and HK140 on chromosome 5. And we constructed two near-isogenic lines (NILs) for RNA-seq analysis, named NIL-qAL5.2HZ and NIL-qAL5.2KLY, respectively. The result of the GO enrichment analysis revealed that differential genes were significantly enriched in the carbohydrate metabolic process, extracellular region, and nucleic acid binding transcription, and KEGG enrichment analysis revealed that alpha-linolenic acid metabolism was significantly enriched. Meanwhile, candidate genes of qAL5.2 were analyzed in RNA-seq, and it was found that ORF8 is differentially expressed between NIL-qAL5.2HZ and NIL-qAL5.2KLY. The fine mapping of qAL5.2 conferring anther length will promote the breed improvement of the restorer line and understanding of the mechanisms driving crop mating patterns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...