Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 718
Filtrar
1.
Environ Sci Technol ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226031

RESUMO

Attention is widely drawn to the extracellular electron transfer (EET) process of electroactive bacteria (EAB) for water purification, but its efficacy is often hindered in complex environmental matrices. In this study, the engineered living materials with EET capability (e-ELMs) were for the first time created with customized geometric configurations for pollutant removal using three-dimensional (3D) bioprinting platform. By combining EAB and tailored viscoelastic matrix, a biocompatible and tunable electroactive bioink for 3D bioprinting was initially developed with tuned rheological properties, enabling meticulous manipulation of microbial spatial arrangement and density. e-ELMs with different spatial microstructures were then designed and constructed by adjusting the filament diameter and orientation during the 3D printing process. Simulations of diffusion and fluid dynamics collectively showcase internal mass transfer rates and EET efficiency of e-ELMs with different spatial microstructures, contributing to the outstanding decontamination performances. Our research propels 3D bioprinting technology into the environmental realm, enabling the creation of intricately designed e-ELMs and providing promising routes to address the emerging water pollution concerns.

2.
Nat Commun ; 15(1): 7778, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237586

RESUMO

Luminescent materials that simultaneously embody bright singlet and triplet excitons hold great potential in optoelectronics, signage, and information encryption. However, achieving high-performance white-light emission is severely hampered by their inherent unbalanced contribution of fluorescence and phosphorescence. Herein, we address this challenge by pressure treatment engineering via the hydrogen bonding cooperativity effect to realize the mixture of n-π*/π-π* transitions, where the triplet state emission was boosted from 7% to 40% in isophthalic acid (IPA). A superior white-light emission based on hybrid fluorescence and phosphorescence was harvested in pressure-treated IPA, and the photoluminescence quantum yield was increased to 75% from the initial 19% (blue-light emission). In-situ high-pressure IR spectra, X-ray diffraction, and neutron diffraction reveal continuous strengthening of the hydrogen bonds with the increase of pressure. Furthermore, this enhanced hydrogen bond is retained down to the ambient conditions after pressure treatment, awarding the targeted IPA efficient intersystem crossing for balanced singlet/triplet excitons population and resulting in efficient white-light emission. This work not only proposes a route for brightening triplet states in organic small molecules, but also regulates the ratio of singlet and triplet excitons to construct high-performance white-light emission.

3.
Front Nutr ; 11: 1458484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221159

RESUMO

Aims: Inflammatory diets can trigger chronic inflammation and affect gut microbiota. However, the relationship between dietary preferences and sensorineural hearing loss (SNHL) remains unclear. This study aims to elucidate the relationship between different dietary preferences and sensorineural deafness. Methods: The Dietary Inflammation Index (DII) and SNHL were defined by data from the National Health and Nutrition Examination Survey (NHANES), and exploring their relationship. Using Mendelian randomization (MR) to analyze the relationship between 34 dietary preferences, 211 gut microbiota, and SNHL. Results: Smooth curve fitting indicated that the risk of SNHL increased with increasing DII score when the DII score was greater than 5.15. MR results suggest that a diet including both oily and non-oily fish can substantially reduce the risk of SNHL. Additionally, six specific gut microbiota were found to have significant causal relationship with SNHL. Conclusion: An inflammatory diet may increase the risk of developing SNHL. The observed relationship between fish consumption, gut microbiota, and SNHL suggests the existence of a gut-inner ear axis.

4.
Clin Cardiol ; 47(9): e70010, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233528

RESUMO

OBJECTIVE: This study aimed to investigate the impact of the donor-recipient BMI ratio on the survival outcomes of heart transplant recipients. METHODS: A retrospective analysis was conducted on 641 heart transplant patients who underwent surgery between September 2008 and June 2021. The BMI ratio (donor BMI divided by recipient BMI) was calculated for each patient. Kaplan-Meier survival analysis and Cox proportional hazards regression were performed to evaluate survival rates and determine the hazard ratio (HR) for mortality. RESULTS: Significant differences were found in donor age and donor-recipient height ratio between the BMI ratio groups. The BMI ratio ≥ 1 group had a higher mean donor age (37.27 ± 10.54 years) compared to the BMI ratio < 1 group (34.72 ± 11.82 years, p = 0.008), and a slightly higher mean donor-recipient height ratio (1.02 ± 0.06 vs. 1.00 ± 0.05, p = 0.002). The Kaplan-Meier survival analysis indicated that the survival rate in the BMI ratio ≥ 1 group was significantly lower than in the BMI ratio < 1 group. Cox multivariate analysis, adjusted for confounding factors, revealed a HR of 1.50 (95% CI: 1.08-2.09) for mortality in patients with a BMI ratio ≥ 1. No significant differences were observed in ICU stay, postoperative hospitalization days, or total mechanical ventilation time between the groups. CONCLUSION: A higher donor-recipient BMI ratio was associated with an increased risk of mortality in heart transplant recipients.


Assuntos
Índice de Massa Corporal , Transplante de Coração , Doadores de Tecidos , Humanos , Estudos Retrospectivos , Feminino , Masculino , Adulto , Doadores de Tecidos/estatística & dados numéricos , Taxa de Sobrevida/tendências , Fatores de Risco , Pessoa de Meia-Idade , Seguimentos , Fatores de Tempo , Resultado do Tratamento
5.
J Transl Med ; 22(1): 811, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223648

RESUMO

BACKGROUND: Mechanical unloading-induced bone loss threatens prolonged spaceflight and human health. Recent studies have confirmed that osteoporosis is associated with a significant reduction in bone microvessels, but the relationship between them and the underlying mechanism under mechanical unloading are still unclear. METHODS: We established a 2D clinostat and hindlimb-unloaded (HLU) mouse model to simulate unloading in vitro and in vivo. Micro-CT scanning was performed to assess changes in the bone microstructure and mass of the tibia. The levels of CD31, Endomucin (EMCN) and histone deacetylase 6 (HDAC6) in tibial microvessels were detected by immunofluorescence (IF) staining. In addition, we established a coculture system of microvascular endothelial cells (MVECs) and osteoblasts, and qRT‒PCR or western blotting was used to detect RNA and protein expression; cell proliferation was detected by CCK‒8 and EdU assays. ChIP was used to detect whether HDAC6 binds to the miRNA promoter region. RESULTS: Bone mass and bone microvessels were simultaneously significantly reduced in HLU mice. Furthermore, MVECs effectively promoted the proliferation and differentiation of osteoblasts under coculture conditions in vitro. Mechanistically, we found that the HDAC6 content was significantly reduced in the bone microvessels of HLU mice and that HDAC6 inhibited the expression of miR-375-3p by reducing histone acetylation in the miR-375 promoter region in MVECs. miR-375-3p was upregulated under unloading and it could inhibit MVEC proliferation by directly targeting low-density lipoprotein-related receptor 5 (LRP5) expression. In addition, silencing HDAC6 promoted the miR-375-3p/LRP5 pathway to suppress MVEC proliferation under mechanical unloading, and regulation of HDAC6/miR-375-3p axis in MVECs could affect osteoblast proliferation under coculture conditions. CONCLUSION: Our study revealed that disuse-induced bone loss may be closely related to a reduction in the number of bone microvessels and that the modulation of MVEC function could improve bone loss induced by unloading. Mechanistically, the HDAC6/miR-375-3p/LRP5 pathway in MVECs might be a promising strategy for the clinical treatment of unloading-induced bone loss.


Assuntos
Proliferação de Células , Células Endoteliais , Epigênese Genética , Elevação dos Membros Posteriores , Desacetilase 6 de Histona , MicroRNAs , Microvasos , Osteoblastos , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Células Endoteliais/metabolismo , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Microvasos/patologia , Osteoblastos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Técnicas de Cocultura , Diferenciação Celular , Masculino , Reabsorção Óssea/patologia , Sequência de Bases , Inibidores de Histona Desacetilases/farmacologia
6.
Front Cell Infect Microbiol ; 14: 1407064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119295

RESUMO

Background & aims: HBV infection initiates autoimmune responses, leading to autoantibody generation. This research explores the role of autoantibodies in HBV-related Acute-on-Chronic Liver Failure (ACLF), offering novel perspectives for clinical management. Method: We applied immunoprecipitation and iTRAQ techniques to screen for autoantibodies in serum from HBV-related cirrhosis patients and conducted detection with conformation- stabilizing ELISA in a cohort of 238 HBV-infected individuals and 49 health controls. Our results were validated in a retrospective cohort comprising 106 ACLF patients and further assessed through immunohistochemical analysis in liver tissues from an additional 10 ACLF cases. Results: Utilizing iTRAQ, we identified Argonaute1-3 autoantibodies (AGO-Abs) in this research. AGO2-Abs notably increased in cirrhosis, decompensation, and further in ACLF, unlike AGO1-Abs and AGO3-Abs. This reflects disease severity correlation. Logistic regression and COX models confirmed AGO2-Abs as independent prognostic indicators for decompensated liver cirrhosis (DLC) and ACLF. In the ROC analysis, AGO2-Abs showed significant diagnostic value for predicting 28- and 90-day mortality (AUROC = 0.853 and 0.854, respectively). Furthermore, combining AGO2-Abs with the Child-Pugh, MELD, and AARC scores significantly improved their predictive accuracy (P < 0.05). Kaplan-Meier analysis showed poorer survival for AGO2-Abs levels above 99.14µg/ml. These findings were supported by a retrospective validation cohort. Additionally, immunohistochemistry revealed band-like AGO2 expression in periportal liver areas, with AGO2-Abs levels correlating with total bilirubin, indicating a potential role in exacerbating liver damage through periportal functions. Conclusions: AGO2-Abs is a robust biomarker for predicting the mortality of patients with HBV-related ACLF.


Assuntos
Insuficiência Hepática Crônica Agudizada , Proteínas Argonautas , Autoanticorpos , Biomarcadores , Cirrose Hepática , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência Hepática Crônica Agudizada/mortalidade , Insuficiência Hepática Crônica Agudizada/imunologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Biomarcadores/sangue , Hepatite B Crônica/complicações , Hepatite B Crônica/mortalidade , Hepatite B Crônica/imunologia , Fígado/patologia , Cirrose Hepática/mortalidade , Cirrose Hepática/imunologia , Prognóstico , Estudos Retrospectivos , Curva ROC
7.
J Fluoresc ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141276

RESUMO

Afterglow materials possess the remarkable capability to harness the energy and subsequently emit light after irradiation is turned off. Owing to their extraordinary ultralong lifetime, afterglow materials have garnered significant interest across various domains such as sensing, optoelectronics, bioimaging, and information encryption. However, these materials typically exhibit temperature sensitivity, rendering their afterglow emission susceptible to efficient quenching at room temperature. Consequently, this study presents herein a straightforward, simple, and universal approach for synthesizing metal-free carbon dots (CDs) endowed with thermally activated delayed fluorescence (TADF) characteristics at room temperature. In this study, TADF-CDs were simply synthesized by pyrolyzing boronic acid (BA) and urea at 500 ℃ for 3 h. Benefiting from the multi-confined effects facilitated by the robust structure of BA matrix, in conjunction with the co-doped heteroatoms of nitrogen and boron, the resultant TADF-CDs manifest remarkably prolonged afterglow TADF emission, characterized by a calculated lifetime of 184.64 ms; moreover, the blue afterglow emission remains perceptible to the naked eye for more than 6 s. The attributes of TADF-CDs were comprehensively elucidated through rigorous characterization, and the universality of the approach was corroborated through experimentation involving fourteen control CDs. Leveraging their distinctive TADF attributes, the prepared TADF-CDs were subsequently employed in advanced applications such as anti-counterfeiting and information encryption.

8.
Cogn Neurodyn ; 18(4): 1525-1537, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104676

RESUMO

Visual stimulation can generate illusory self-motion perception (vection) and cause motion sickness among susceptible people, but the underlying neural mechanism is not fully understood. In this study, SSVEP responses to visual stimuli presented in different parts of the visual field are examined in individuals with different susceptibilities to motion sickness to identify correlates of motion sickness. Alpha band SSVEP data were collected from fifteen university students when they were watching roll-vection-inducing visual stimulation containing: (1) an achromatic checkerboard flickering at 8.6 Hz in the central visual field (CVF) and (2) rotating dots pattern flickering at 12 Hz in the peripheral visual field. Rotating visual stimuli provoked explicit roll-vection perception in all participants. The motion sickness resistant participants showed reduced SSVEP response to CVF checkerboard during vection, while the motion sickness susceptible participants showed increased SSVEP response. The changes of SSVEP in the presence of vection significantly correlated with individual motion sickness susceptibility and rated scores on simulator sickness symptoms. Discussion on how the findings can support the sensory conflict theory is presented. Results offer a new perspective on vection and motion sickness susceptibility. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-09991-7.

9.
Lung ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180684

RESUMO

BACKGROUND: Pneumonia is a common lower respiratory tract infection, and early diagnosis is crucial for timely treatment and improved prognosis. Traditional diagnostic methods for pneumonia, such as chest imaging and microbiological examinations, have certain limitations. Exhaled volatile organic compounds (VOCs) detection, as an emerging non-invasive diagnostic technique, has shown potential application value in pneumonia screening. METHOD: A systematic search was conducted on PubMed, Embase, Cochrane Library, and Web of Science, with the retrieval time up to March 2024. The inclusion criteria were diagnostic studies evaluating exhaled VOCs detection for the diagnosis of pneumonia, regardless of the trial design type. A meta-analysis was performed using a bivariate model for sensitivity and specificity. RESULTS: A total of 14 diagnostic studies were included in this meta-analysis. The pooled results demonstrated that exhaled VOCs detection had a combined sensitivity of 0.94 (95% CI: 0.92-0.95) and a combined specificity of 0.83 (95% CI: 0.81-0.84) in pneumonia screening, with an area under the summary receiver operating characteristic (SROC) curve (AUC) of 0.96. The pooled diagnostic odds ratio (DOR) was 104.37 (95% CI: 27.93-390.03), and the pooled positive and negative likelihood ratios (LR) were 8.98 (95% CI: 3.88-20.80) and 0.11 (95% CI: 0.05-0.22), indicating a high diagnostic performance. CONCLUSION: This study highlights the potential of exhaled VOCs detection as an effective, non-invasive screening method for pneumonia, which could facilitate future diagnosis in pneumonia. Further high-quality, large-scale studies are required to confirm the clinical utility of exhaled VOCs detection in pneumonia screening. STUDY REGISTRATION: PROSPERO, Review no. CRD42024520498.

10.
ACS Appl Bio Mater ; 7(8): 5771-5779, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39110771

RESUMO

Nanomaterials with photoresponsivity have garnered attention due to their fluorescence imaging, photodynamic, and photothermal therapeutic properties. In this study, a photoresponsivity nanoassembly was developed by using photosensitizers and carbon dots (CDs). Due to their multiple excitation peaks and multicolor fluorescence emission, especially their membrane-permeating properties, these nanoassemblies can label cells with multiple colors and track cell imaging in real time. Additionally, the incorporation of photosensitizers and CDs provides the nanoassemblies with the potential for photodynamic therapy (PDT) and photothermal therapy (PTT). The nanoassemblies effectively suppressed the activity of Escherichia coli and Staphylococcus aureus through PDT and PTT. Moreover, the nanoassemblies exhibited a high affinity for E. coli and S. aureus. These distinct features confer broad-spectrum antibacterial properties to the nanoassemblies. As a photoresponsivity nanoplatform, these nanoassemblies have demonstrated potential applications in the fields of bioimaging and antimicrobial.


Assuntos
Antibacterianos , Materiais Biocompatíveis , Escherichia coli , Teste de Materiais , Tamanho da Partícula , Fármacos Fotossensibilizantes , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Testes de Sensibilidade Microbiana , Humanos , Pontos Quânticos/química , Nanoestruturas/química , Carbono/química , Carbono/farmacologia , Imagem Óptica , Fotoquimioterapia , Sobrevivência Celular/efeitos dos fármacos
11.
Transpl Int ; 37: 11354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119063

RESUMO

Background: In the early postoperative stage after heart transplantation, there is a lack of predictive tools to guide postoperative management. Whether the vasoactive-inotropic score (VIS) can aid this prediction is not well illustrated. Methods: In total, 325 adult patients who underwent heart transplantation at our center between January 2015 and December 2018 were included. The maximum VIS (VISmax) within 24 h postoperatively was calculated. The Kaplan-Meier method was used for survival analysis. A logistic regression model was established to determine independent risk factors and to develop a nomogram for a composite severe adverse outcome combining early mortality and morbidity. Results: VISmax was significantly associated with extensive early outcomes such as early death, renal injury, cardiac reoperation and mechanical circulatory support in a grade-dependent manner, and also predicted 90-day and 1-year survival (p < 0.05). A VIS-based nomogram for the severe adverse outcome was developed that included VISmax, preoperative advanced heart failure treatment, hemoglobin and serum creatinine. The nomogram was well calibrated (Hosmer-Lemeshow p = 0.424) with moderate to strong discrimination (C-index = 0.745) and good clinical utility. Conclusion: VISmax is a valuable prognostic index in heart transplantation. In the early post-transplant stage, this VIS-based nomogram can easily aid intensive care clinicians in inferring recipient status and guiding postoperative management.


Assuntos
Transplante de Coração , Nomogramas , Humanos , Transplante de Coração/efeitos adversos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/diagnóstico , Insuficiência Cardíaca/cirurgia , Fatores de Risco , Cuidados Pós-Operatórios/métodos , Estimativa de Kaplan-Meier , Idoso , Prognóstico
12.
J Colloid Interface Sci ; 677(Pt A): 446-458, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39098278

RESUMO

5-aminolevulinic acid photodynamic therapy (ALA-PDT) is an emerging therapeutic strategy for skin cancer due to its noninvasiveness and high spatiotemporal selectivity. However, poor skin penetration, poor intratumoral delivery, the instability of aqueous ALA, and the tumor's inherent hypoxia microenvironment are major hurdles hindering the efficacy of ALA-PDT. Herein, we aim to address these challenges by using microneedles (MNs) to assist in delivering nanoparticles based on natural polymeric tea polyphenols (TP NPs) to self-assemble and load ALA (ALA@TP NPs). The TP NPs specifically increase cellular uptake of ALA by A375 and A431 cells and reduce mitochondrial membrane potential. Subsequently, the photosensitizer protoporphyrin IX derived from ALA accumulates in the tumor cells in a dose-dependent manner with TP NPs, generating reactive oxygen species to promote apoptosis and necrosis of A375 and A431 cells. Interestingly, TP NPs can ameliorate the tumor's inherent hypoxia microenvironment and rapid oxygen consumption during PDT by inhibiting hypoxia inducible factor-1α, thereby boosting reactive oxygen species (ROS) generation and enhancing ALA-PDT efficacy through a positive feedback loop. After ALA@TP NPs are loaded into MNs to fabricate ALA@TP NPs@MNs, the MNs enhance skin penetration and storage stability of ALA. Importantly, they exhibit remarkable antitumor efficacy in A375-induced melanoma and A431-induced squamous cell carcinoma with a reduced dose of ALA and reverse hypoxia in vivo. This study provides a facile and novel strategy that integrates MNs and green NPs of TP for addressing the bottlenecks of ALA-PDT and enhancing the ALA-PDT efficacy against skin cancers for future clinical translation.

13.
Environ Int ; 190: 108928, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39106633

RESUMO

PM2.5 pollution has been associated with the incidence of lung cancer, but the underlying mechanism is still unclear. PIWI-interacting RNAs (piRNAs), initially identified in germline cells, have emerged as a novel class of small non-coding RNAs (26 - 32 nucleotides) with diverse functions in various diseases, including cancer. However, the role and mechanism of piRNAs in the development of PM2.5-induced lung cancer remain to be clarified. In the presented study, we used a PM2.5-induced malignant transformation cell model to analyze the change of piRNA profiles. Among the disturbed piRNAs, piR-27222 was identified as an oncogene that inhibited cell death in a m6A-dependent manner. Mechanistically, we found that piR-27222 could deubiquitinate and stabilize eIF4B by directly binding to eIF4B and reducing its interaction with PARK2. The enhanced expression of eIF4B, in turn, promoted the expression of WTAP, leading to increased m6A modification in the Casp8 transcript. Consequently, the stability of Casp8 transcripts was reduced, rendering lung cancer cells resistant to PANoptosis. Collectively, our findings reveal that PM2.5 exposure up-regulated piR-27222 expression, which could affect EIF4B/WTAP/m6A axis, thereby inhibiting PANoptosis of cells and promoting lung cancer. Our study provides new insights into understanding the epigenetic mechanisms underlining PM2.5-induced lung cancer.


Assuntos
Neoplasias Pulmonares , Material Particulado , RNA Interferente Pequeno , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Material Particulado/toxicidade , Humanos , Poluentes Atmosféricos/toxicidade
14.
Biomedicines ; 12(8)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39200290

RESUMO

The ischemia-reperfusion process of a donor heart during heart transplantation leads to severe mitochondrial dysfunction, which may be the main cause of donor heart dysfunction after heart transplantation. Pyruvate carboxylase (PC), an enzyme found in mitochondria, is said to play a role in the control of oxidative stress and the function of mitochondria. This research examined the function of PC and discovered the signaling pathways controlled by PC in myocardial IRI. We induced IRI using a murine heterotopic heart transplantation model in vivo and a hypoxia-reoxygenation cell model in vitro and evaluated inflammatory responses, oxidative stress levels, mitochondrial function, and cardiomyocyte apoptosis. In both in vivo and in vitro settings, we observed a significant decrease in PC expression during myocardial IRI. PC knockdown aggravated IRI by increasing MDA content, LDH activity, TUNEL-positive cells, serum cTnI level, Bax protein expression, and the level of inflammatory cytokines and decreasing SOD activity, GPX activity, and Bcl-2 protein expression. PC overexpression yielded the opposite findings. Additional research indicated that reducing PC levels could block the Wnt/ß-catenin pathway and glutamine metabolism by hindering the movement of ß-catenin to the nucleus and reducing the activity of complex I and complex II, as well as ATP levels, while elevating the ratios of NADP+/NADPH and GSSG/GSH. Overall, the findings indicated that PC therapy can shield the heart from IRI during heart transplantation by regulating glutamine metabolism through the Wnt/ß-catenin pathway.

15.
Nat Commun ; 15(1): 7381, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191791

RESUMO

To date, only one polymer can self-grow to an extended length beyond its original size at room temperature without external stimuli or energy input. This breakthrough paves the way for significant advancements in untethered autonomous soft robotics, eliminating the need for the energy input or external stimuli required by all existing soft robotics systems. However, only freshly prepared samples in an initial state can self-grow, while non-fresh ones cannot. The necessity of synthesizing from monomers for each use imposes significant limitations on practical applications. Here, we propose a strategy to rejuvenate non-fresh samples to their initial state for on-demand self-growth through the synergistic effects of solvents and dynamic covalent bonds during swelling. The solvent used for swelling physically transforms the non-fresh LCEs from the liquid crystal phase to the isotropic phase. Simultaneously, the introduction of the transesterification catalyst through swelling facilitates topological rearrangements through exchange reactions of dynamic covalent bonds. The rejuvenation process can also erase growth history, be repeated several times, and be regulated by selective swelling. This strategy provides a post-modulation method for the rejuvenation and reuse of self-growing LCEs, promising to offer high-performance materials for cutting-edge soft growing robotics.

16.
Biology (Basel) ; 13(8)2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39194546

RESUMO

The complete mitochondrial genome has been extensively utilized in studies related to phylogenetics, offering valuable perspectives on evolutionary relationships. The mitochondrial genome of the fine-eyed plateau loach, Triplophysa microphthalma, has not attracted much attention, although this species is endemic to China. In this study, we characterized the mitochondrial genome of T. microphthalma and reassessed the classification status of its genus. The complete mitochondrial genome of T. microphthalma was 16,591 bp and contained thirty-seven genes, including thirteen protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), and twenty-two transfer RNA genes (tRNAs). All but one of the thirteen PCGs had the regular start codon ATG; the gene cox1 started with GTG. Six PCGs had incomplete stop codons (T--). These thirteen PCGs are thought to have evolved under purifying selection, and the mitogenome shared a high degree of similarity with the genomes of species within the genus Leptobotia. All tRNA genes exhibited the standard clover-shaped structure, with the exception of the trnS1 gene, which lacked a DHU stem. A phylogenetic analysis indicated that T. microphthalma was more closely related to species within the genus Triplophysa than to those in Barbatula. The present study contributes valuable genomic information for T. microphthalma, and offers new perspectives on the phylogenetic relationships among species of Triplophysa and Barbatula. The findings also provide essential data that can inform the management and conservation strategies for T. microphthalma and other species of Triplophysa and Barbatula.

17.
Drug Metab Dispos ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39214664

RESUMO

CYP8B1 is the unique P450 enzyme with sterol 12-oxidation activity, playing an exclusive role in 12α-hydroxylating intermediates along the bile acid (BA) synthesis pathway. Despite the long history of BA metabolism studies, it is unclear whether CYP8B1 catalyzes 12α-hydroxylation of C27 BAs, the key intermediates shuttling between mitochondria and peroxisomes. This work provides robust in vitro evidence that both microsomal and recombinant CYP8B1 enzymes catalyze the 12α-hydroxylation of dihydroxycoprostanic acid (DHCA) into trihydroxycoprostanic acid (THCA). On the one hand, DHCA 12α-hydroxylation reactivity is conservatively detected in liver microsomes of both human and preclinical animals. The reactivity of human tissue fractions conforms well with the selectivity of CYP8B1 mRNA expression, while the contribution of P450 enzymes other than CYP8B1 is excluded by reaction phenotyping in commercial recombinant enzymes. On the other hand, we prepared functional recombinant human CYP8B1 proteins according to a recently published protocol. Titration of the purified CYP8B1 proteins with either C4 (7α-hydroxy-4-cholesten-3-one) or DHCA yields expected blue shifts of the heme Soret peak (type I binding). The recombinant CYP8B1 proteins efficiently catalyze 12α-hydroxylation of both DHCA and C4, with Km of 3.0 and 1.9 µM and kcat of 3.2 and 2.6 min-1, respectively. In summary, the confirmed role of CYP8B1 in 12α-hydroxylation of C27 BAs has furnished the forgotten passageway in the BA synthesis pathway. The present finding might have opened a new window to consider the biology of CYP8B1 in glucolipid metabolism and to evaluate CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases. Significance Statement Academic community has spent about 90 years interpreting the synthesis of bile acids. However, the 12α-hydroxylation of intermediates catalyzed by CYP8B1 is not completely mapped on the classic pathway, particularly for the C27 bile acids, the pivotal intermediates shuttling between mitochondria and peroxisomes. This work discloses the forgotten 12α-hydroxylation pathway from dihydroxycoprostanic acid into trihydroxycoprostanic acid. The present finding may facilitate evaluating CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases.

18.
Plant Cell Environ ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148214

RESUMO

Chilling stress is a major environmental factor that significantly reduces crop production. To adapt to chilling stress, plants activate a series of cellular responses and accumulate an array of metabolites, particularly proline. Here, we report that the transcription factor SlWRKY51 increases proline contents in tomato (Solanum lycopersicum) under chilling stress. SlWRKY51 expression is induced under chilling stress. Knockdown or knockout of SlWRKY51 led to chilling-sensitive phenotypes, with lower photosynthetic capacity and more reactive oxygen species (ROS) accumulation than the wild type (WT). The proline contents were significantly reduced in SlWRKY51 knockdown and knockout lines under chilling stress, perhaps explaining the phenotypes of these lines. D-1-pyrroline-5-carboxylate synthetase (P5CS), which catalyses the rate-limiting step of proline biosynthesis, is encoded by two closely related P5CS genes (P5CS1 and P5CS2). We demonstrate that SlWRKY51 directly activates the expression of P5CS1 under chilling stress. In addition, the VQ (a class of plant-specific proteins containing the conserved motif FxxhVQxhTG) family member SlVQ10 physically interacts with SlWRKY51 to enhance its activation of P5CS1. Our study reveals that the chilling-induced transcription factor SlWRKY51 enhances chilling tolerance in tomato by promoting proline accumulation.

19.
Curr Opin Genet Dev ; 88: 102243, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142048

RESUMO

Our knowledge of human biology is mainly originated from studies using animal models. However, interspecies differences between human and model organisms may lead to imprecise extrapolation of results obtained from model organisms. Organoids are three-dimensional cell clusters derived from pluripotent or adult stem cells that self-organize into organ-like structures reminiscent of the cognate organ. The establishment of human organoids makes it possible to study organ or tissue pathophysiology that is specific to human beings. However, most organoids do not have organ-specific vasculature, neurons, and immune cells, hence limiting their utility in emulating complex pathophysiological phenotypes. Among the various approaches to address these limitations, xenotransplantation represents a promising 'shortcut'. We will discuss recent advance in constructing tissue complexity in organoids, with a special focus on xenotransplantation.

20.
Anal Chim Acta ; 1320: 343035, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142775

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is a pioneering and effective anticancer modality with low adverse effects and high selectivity. Hypochlorous acid or hypochlorite (HClO/ClO-) is a type of inflammatory cytokine. The abnormal increase of ClO- in tumor cells is related to tumor pathogenesis and may be a "friend" for the design and synthesis of responsive phototherapy agents. However, preparing responsive phototherapy agents for all-in-one noninvasive diagnosis and simultaneous in situ therapy in a complex tumor environment is highly desirable but still remains an enormously demanding task. RESULTS: An acceptor-π bridge-donor-π bridge-acceptor (A-π-D-π-A) type photosensitizer TPTPy was designed and synthesized based on the phenothiazine structure which was used as the donor moiety as well as a ClO- responsive group. TPTPy was a multifunctional mitochondria targeted aggregation-induced emission (AIE) photosensitizer which could quickly and sensitively respond to ClO- with fluorescence "turn on" performance (19-fold fluorescence enhancement) and enhanced type I reactive oxygen species (ROS) generation to effectively ablate hypoxic tumor cells. The detection limit of TPTPy to ClO- was calculated to be 185.38 nM. The well-tailored TPTPy anchoring to mitochondria and producing ROS in situ could disrupt mitochondria and promote cell apoptosis. TPTPy was able to image inflammatory cells and tumor cells through ClO- response. In vivo results revealed that TPTPy was successfully utilized for PDT in tumor bearing nude mice and exhibited excellent biological safety for major organs. SIGNIFICANCE AND NOVELTY: A win-win integration strategy was proposed to design a tumor intracellular ClO- responsive photosensitizer TPTPy capable of both type I and type II ROS production to achieve photodynamic therapy of tumor. This work sheds light on the win-win integration design by taking full advantage of the characteristics of tumor microenvironment to build up responsive photosensitizer for in situ PDT of tumor.


Assuntos
Ácido Hipocloroso , Mitocôndrias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/uso terapêutico , Ácido Hipocloroso/análise , Ácido Hipocloroso/metabolismo , Animais , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/análise , Camundongos Endogâmicos BALB C , Fenotiazinas/química , Fenotiazinas/farmacologia , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Imagem Óptica , Sobrevivência Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...