Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
BMC Med Res Methodol ; 24(1): 158, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044195

RESUMO

BACKGROUND: In randomized clinical trials, treatment effects may vary, and this possibility is referred to as heterogeneity of treatment effect (HTE). One way to quantify HTE is to partition participants into subgroups based on individual's risk of experiencing an outcome, then measuring treatment effect by subgroup. Given the limited availability of externally validated outcome risk prediction models, internal models (created using the same dataset in which heterogeneity of treatment analyses also will be performed) are commonly developed for subgroup identification. We aim to compare different methods for generating internally developed outcome risk prediction models for subject partitioning in HTE analysis. METHODS: Three approaches were selected for generating subgroups for the 2,441 participants from the United States enrolled in the ASPirin in Reducing Events in the Elderly (ASPREE) randomized controlled trial. An extant proportional hazards-based outcomes predictive risk model developed on the overall ASPREE cohort of 19,114 participants was identified and was used to partition United States' participants by risk of experiencing a composite outcome of death, dementia, or persistent physical disability. Next, two supervised non-parametric machine learning outcome classifiers, decision trees and random forests, were used to develop multivariable risk prediction models and partition participants into subgroups with varied risks of experiencing the composite outcome. Then, we assessed how the partitioning from the proportional hazard model compared to those generated by the machine learning models in an HTE analysis of the 5-year absolute risk reduction (ARR) and hazard ratio for aspirin vs. placebo in each subgroup. Cochran's Q test was used to detect if ARR varied significantly by subgroup. RESULTS: The proportional hazard model was used to generate 5 subgroups using the quintiles of the estimated risk scores; the decision tree model was used to generate 6 subgroups (6 automatically determined tree leaves); and the random forest model was used to generate 5 subgroups using the quintiles of the prediction probability as risk scores. Using the semi-parametric proportional hazards model, the ARR at 5 years was 15.1% (95% CI 4.0-26.3%) for participants with the highest 20% of predicted risk. Using the random forest model, the ARR at 5 years was 13.7% (95% CI 3.1-24.4%) for participants with the highest 20% of predicted risk. The highest outcome risk group in the decision tree model also exhibited a risk reduction, but the confidence interval was wider (5-year ARR = 17.0%, 95% CI= -5.4-39.4%). Cochran's Q test indicated ARR varied significantly only by subgroups created using the proportional hazards model. The hazard ratio for aspirin vs. placebo therapy did not significantly vary by subgroup in any of the models. The highest risk groups for the proportional hazards model and random forest model contained 230 participants each, while the highest risk group in the decision tree model contained 41 participants. CONCLUSIONS: The choice of technique for internally developed models for outcome risk subgroups influences HTE analyses. The rationale for the use of a particular subgroup determination model in HTE analyses needs to be explicitly defined based on desired levels of explainability (with features importance), uncertainty of prediction, chances of overfitting, and assumptions regarding the underlying data structure. Replication of these analyses using data from other mid-size clinical trials may help to establish guidance for selecting an outcomes risk prediction modelling technique for HTE analyses.


Assuntos
Aspirina , Aprendizado de Máquina , Modelos de Riscos Proporcionais , Humanos , Aspirina/uso terapêutico , Idoso , Feminino , Masculino , Resultado do Tratamento , Estados Unidos , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , Modelos Estatísticos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Árvores de Decisões , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos
2.
Neuroscientist ; : 10738584241259702, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041416

RESUMO

The vagus nerve, as an important component of the gut-brain axis, plays a crucial role in the communication between the gut and brain. It influences food intake, fat metabolism, and emotion by regulating the gut-brain axis, which is closely associated with the development of gastrointestinal, psychiatric, and metabolism-related disorders. In recent years, significant progress has been made in understanding the vagus-mediated regulatory pathway, highlighting its profound implications in the development of many diseases. Here, we summarize the latest advancements in vagus-mediated gut-brain pathways and the novel interventions targeting the vagus nerve. This will provide valuable insights for future research on treatment of obesity and gastrointestinal and depressive disorders based on vagus nerve stimulation.

3.
J Transl Med ; 22(1): 624, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965537

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases. NAFLD leads to liver fibrosis and hepatocellular carcinoma, and it also has systemic effects associated with metabolic diseases, cardiovascular diseases, chronic kidney disease, and malignant tumors. Therefore, it is important to diagnose NAFLD early to prevent these adverse effects. METHODS: The GSE89632 dataset was downloaded from the Gene Expression Omnibus database, and then the optimal genes were screened from the data cohort using lasso and Support Vector Machine Recursive Feature Elimination (SVM-RFE). The ROC values of the optimal genes for the diagnosis of NAFLD were calculated. The relationship between optimal genes and immune cells was determined using the DECONVOLUTION algorithm CIBERSORT. Finally, the specificity and sensitivity of the diagnostic genes were verified by detecting the expression of the diagnostic genes in blood samples from 320 NAFLD patients and liver samples from 12 mice. RESULTS: Through machine learning we identified FOSB, GPAT3, RGCC and RNF43 were the key diagnostic genes for NAFLD, and they were further demonstrated by a receiver operating characteristic curve analysis. We found that the combined diagnosis of the four genes identified NAFLD samples well from normal samples (AUC = 0.997). FOSB, GPAT3, RGCC and RNF43 were strongly associated with immune cell infiltration. We also experimentally examined the expression of these genes in NAFLD patients and NAFLD mice, and the results showed that these genes are highly specific and sensitive. CONCLUSIONS: Data from both clinical and animal studies demonstrate the high sensitivity, specificity and safety of FOSB, GPAT3, RGCC and RNF43 for the diagnosis of NAFLD. The relationship between diagnostic key genes and immune cell infiltration may help to understand the development of NAFLD. The study was reviewed and approved by Ethics Committee of Tianjin Second People's Hospital in 2021 (ChiCTR1900024415).


Assuntos
Hepatopatia Gordurosa não Alcoólica , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Humanos , China , Animais , Curva ROC , Reprodutibilidade dos Testes , Camundongos , Camundongos Endogâmicos C57BL , Masculino , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Máquina de Vetores de Suporte , Regulação da Expressão Gênica
4.
Cell Metab ; 36(7): 1482-1493.e7, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959862

RESUMO

Although human core body temperature is known to decrease with age, the age dependency of facial temperature and its potential to indicate aging rate or aging-related diseases remains uncertain. Here, we collected thermal facial images of 2,811 Han Chinese individuals 20-90 years old, developed the ThermoFace method to automatically process and analyze images, and then generated thermal age and disease prediction models. The ThermoFace deep learning model for thermal facial age has a mean absolute deviation of about 5 years in cross-validation and 5.18 years in an independent cohort. The difference between predicted and chronological age is highly associated with metabolic parameters, sleep time, and gene expression pathways like DNA repair, lipolysis, and ATPase in the blood transcriptome, and it is modifiable by exercise. Consistently, ThermoFace disease predictors forecast metabolic diseases like fatty liver with high accuracy (AUC > 0.80), with predicted disease probability correlated with metabolic parameters.


Assuntos
Envelhecimento , Face , Doenças Metabólicas , Humanos , Pessoa de Meia-Idade , Idoso , Adulto , Masculino , Feminino , Idoso de 80 Anos ou mais , Adulto Jovem , Aprendizado Profundo , Temperatura Corporal , Processamento de Imagem Assistida por Computador
5.
Aging Cell ; : e14196, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845183

RESUMO

Stroke is a major threat to life and health in modern society, especially in the aging population. Stroke may cause sudden death or severe sequela-like hemiplegia. Although computed tomography (CT) and magnetic resonance imaging (MRI) are standard diagnosis methods, and artificial intelligence models have been built based on these images, shortage in medical resources and the time and cost of CT/MRI imaging hamper fast detection, thus increasing the severity of stroke. Here, we developed a convolutional neural network model by integrating four networks, Xception, ResNet50, VGG19, and EfficientNetb1, to recognize stroke based on 2D facial images with a cross-validation area under curve (AUC) of 0.91 within the training set of 185 acute ischemic stroke patients and 551 age- and sex-matched controls, and AUC of 0.82 in an independent data set regardless of age and sex. The model computed stroke probability was quantitatively associated with facial features, various clinical parameters of blood clotting indicators and leukocyte counts, and, more importantly, stroke incidence in the near future. Our real-time facial image artificial intelligence model can be used to rapidly screen and prediagnose stroke before CT scanning, thus meeting the urgent need in emergency clinics, potentially translatable to routine monitoring.

6.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167274, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838411

RESUMO

This study aims to investigate the role of claudin-5 (Cldn5) in cardiac structural integrity. Proteomic analysis was performed to screen the protein profiles in enlarged left atrium from atrial fibrillation (AF) patients. Cldn5 shRNA adeno-associated virus (AAV) or siRNA was injected into the mouse left ventricle or added into HL1 cells respectively to knockdown Cldn5 in cardiomyocytes to observe whether the change of Cldn5 influences cardiac morphology and function, and affects those protein expressions stem from the proteomic analysis. Mitochondrial density and membrane potential were also measured by Mitotracker staining and JC-1 staining under the confocal microscope in HL1 cells. Cldn5 was reduced in cardiomyocytes from the left atrial appendage of AF patients compared to non-AF donors. Proteomic analysis showed 83 proteins were less abundant and 102 proteins were more abundant in AF patients. KEGG pathway analysis showed less abundant CACNA2D2, CACNB2, MYL2 and MAP6 were highly associated with dilated cardiomyopathy. Cldn5 shRNA AAV injection caused severe cardiac atrophy, dilation and myocardial dysfunction in mice. The decreases in mitochondrial numbers and mitochondrial membrane potentials in HL1 cells were observed after Cldn5 knockdown. We demonstrated for the first time the mechanism of Cldn5 downregulation-induced myocyte atrophy and myocardial dysfunction might be associated with the downregulation of CACNA2D2, CACNB2, MYL2 and MAP6, and mitochondrial dysfunction in cardiomyocytes.


Assuntos
Fibrilação Atrial , Claudina-5 , Miócitos Cardíacos , Animais , Feminino , Humanos , Masculino , Camundongos , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Fibrilação Atrial/genética , Linhagem Celular , Claudina-5/metabolismo , Claudina-5/genética , Potencial da Membrana Mitocondrial/genética , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteômica/métodos
7.
J Surg Res ; 300: 298-308, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838427

RESUMO

INTRODUCTION: The recent results of the JCOG 0802 and CALGB 140503 studies suggest that segmentectomy should be considered instead of lobectomy for patients with peripheral <2 cm node-negative non-small cell lung cancer (NSCLC). This study aimed to test this hypothesis in a retrospective analysis of a larger dataset of patients with stage I NSCLC recorded in the Surveillance, Epidemiology, and End Results database. METHODS: Patients with all stage I NSCLC (≤4 cm in size) who underwent either segmentectomy or lobectomy from 2000 to 2017 were analyzed. The primary endpoints were overall survival and lung cancer-specific survival, while the secondary endpoints were the 30-day and 90-day mortality. RESULTS: Overall, 32,673 patients treated by lobectomy and 2166 patients treated by segmentectomy were included in the initial data collection. After 1:1 propensity score matching (PSM), 2016 patients in each group were enrolled in the final analysis with well-balanced baseline characteristics. After PSM, there was no difference between segmentectomy and lobectomy for all stage IA NSCLC (≤3 cm in size) in both overall survival and lung cancer-specific survival (hazard ratio: 0.87 [0.74-1.02], P value: 0.09 and hazard ratio: 0.81 [0.4-1.03], P value: 0.09, respectively). Furthermore, lobectomy had higher 30-day mortality than segmentectomy: 1.1% versus 2.1%, P value: 0.01. However, this difference was not significant for 90-day mortality, even after PSM (3.9% versus 3.0%, P value: 0.17). CONCLUSIONS: We found no evidence to support the use of lobectomy rather than segmentectomy in stage IA NSCLC in terms of either overall or lung cancer-specific long-term survival. The choice of lobectomy may also be detrimental to early postoperative recovery.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Estadiamento de Neoplasias , Pneumonectomia , Humanos , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Masculino , Pneumonectomia/métodos , Pneumonectomia/mortalidade , Feminino , Estudos Retrospectivos , Idoso , Pessoa de Meia-Idade , Programa de SEER/estatística & dados numéricos , Resultado do Tratamento , Pontuação de Propensão
8.
Int Immunopharmacol ; 135: 112263, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788444

RESUMO

Geranylgeranylacetone (GGA), an isoprenoid compound widely utilized as an antiulcer agent in Asia, confers protection against ischemia, anoxia, and oxidative stress by rapidly enhancing the expression of HSP70. Nevertheless, the impact of GGA on sepsis-associated intestinal injury remains unexplored. Thus, this study is crafted to elucidate the protective efficacy and underlying mechanisms of GGA against septic intestinal damage. Our findings revealed that GGA significantly extended the survival duration of septic mice, and mitigated lipopolysaccharide (LPS)-induced alterations in intestinal permeability and tissue damage. Furthermore, GGA effectively suppressed LPS-induced cytokine release, attenuated levels of reactive oxygen species (ROS) and malondialdehyde, and bolstered antioxidant-related parameters within the intestinal tissue of LPS-stimulated mice. Mechanistically, GGA significantly increased HSP70 expression and promoted E3 ubiquitin ligase CHIP to play the role in ubiquitination and degradation of karyopherin-α2 (KPNA2), resulting in inhibition of nuclear translocation of NF-κB and reduced NOX1, NOX2 and NOX4 expression. The inhibitory action of GGA on cytokine release and ROS generation was abolished by CHIP knockdown in IEC-6 cells treated with LPS. Simultaneously, the downregulation of CHIP reversed the suppressive role of GGA in the LPS-induced NF-κB activation and the expression of NOX1, NOX2 and NOX4 in IEC-6 cells. The effects of GGA on mitigating intestinal damage, inflammation and oxidative stress caused by LPS were eliminated in CHIP knockout mice. Our results demonstrate that the protective effect of GGA against LPS-caused intestinal injury of mice is dependent on CHIP activation, which promotes KPNA2 degradation and restrains translocation of NF-κB into nucleus, leading to suppressing LPS-induced inflammatory response and oxidative stress.


Assuntos
Anti-Inflamatórios , Diterpenos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Sepse , Animais , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Sepse/tratamento farmacológico , Sepse/complicações , Masculino , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Linhagem Celular , Citocinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos , NF-kappa B/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Enteropatias/tratamento farmacológico , Enteropatias/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética
9.
Adv Mater ; 36(31): e2403097, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38753369

RESUMO

Rechargeable Zinc-iodine batteries (ZIBs) are gaining attention as energy storage devices due to their high energy density, low-cost, and inherent safety. However, the poor cycling performance of these batteries always arises from the severe leakage and shuttle effect of polyiodides (I3 - and I5 -). Herein, a novel cationic pyridine-rich covalent triazine framework (CCTF-TPMB) is developed to capture and confine iodine (I2) species via strong electrostatic interaction, making it an attractive host for I2 in ZIBs. The as-fabricated ZIBs with I2 loaded CCTF-TPMB (I2@CCTF-TPMB) cathode achieve a large specific capacity of 243 mAh g-1 at 0.2 A g-1 and an exceptionally stable cyclic performance, retaining 93.9% of its capacity over 30 000 cycles at 5 A g-1. The excellent electrochemical performance of the ZIBs can be attributed to the pyridine-rich cationic sites of CCTF-TPMB, which effectively suppress the leakage and shuttle of polyiodides, while also accelerating the conversion reaction of I2 species. Combined in situ Raman and UV-vis analysis, along with theoretical calculations, clearly reveal the critical role played by pyridine-rich cationic sites in boosting the ZIBs performances. This work opens up a promising pathway for designing advanced I2 cathode materials toward next-generation ZIBs and beyond.

10.
Shock ; 61(6): 915-923, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38662592

RESUMO

ABSTRACT: ß 3 -adrenergic receptor (ß 3 -AR) has been proposed as a new therapy for several myocardial diseases. However, the effect of ß 3 -AR activation on sepsis-induced myocardial apoptosis is unclear. Here, we investigated the effect of ß 3 -AR activation on the cardiomyocyte apoptosis and cardiac dysfunction in cecal ligation and puncture (CLP)-operated rats and lipopolysaccharide (LPS)-treated cardiomyocytes. We found that ß 3 -AR existed both in adult rat ventricular myocytes (ARVMs) and H9c2 cells. The expression of ß 3 -AR was upregulated in LPS-treated ARVMs and the heart of CLP rats. Pretreatment with ß 3 -AR agonist, BRL37344, inhibited LPS-induced cardiomyocyte apoptosis and caspase-3, -8, and -9 activation in ARVMs. BRL37344 also reduced apoptosis and increased the protein levels of PI3K, p-Akt Ser473 and p-eNOS Ser1177 in LPS-treated H9c2 cells. Inhibition of PI3K using LY294002 abolished the inhibitory effect of BRL37344 on LPS-induced caspase-3, -8, and -9 activation in H9c2 cells. Furthermore, administration of ß 3 -AR antagonist, SR59230A (5 mg/kg), significantly decreased the maximum rate of left ventricular pressure rise (+dP/dt) in CLP-induced septic rats. SR59230A not only increased myocardial apoptosis, reduced p-Akt Ser473 and Bcl-2 contents, but also increased mitochondrial Bax, cytoplasm cytochrome c, cleaved caspase-9, and cleaved caspase-3 levels of the myocardium in septic rats. These results suggest that endogenous ß 3 -AR activation alleviates sepsis-induced cardiomyocyte apoptosis via PI3K/Akt signaling pathway and maintains intrinsic myocardial systolic function in sepsis.


Assuntos
Apoptose , Miócitos Cardíacos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Receptores Adrenérgicos beta 3 , Sepse , Transdução de Sinais , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Apoptose/efeitos dos fármacos , Sepse/metabolismo , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Receptores Adrenérgicos beta 3/metabolismo , Lipopolissacarídeos/toxicidade , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Linhagem Celular , Etanolaminas
11.
Biomed Pharmacother ; 175: 116633, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670049

RESUMO

Sepsis is a severe inflammatory disorder that can lead to life-threatening multiple organ injury. Lipopolysaccharide (LPS)-induced inflammation is the leading cause of multiple organ failure in sepsis. This study aimed to explore the effect of a novel agent, 2-(4-hydroxy-3-methoxyphenyl)-benzothiazole (YL-109), on LPS-induced multiple organ injury and the molecular mechanisms underlying these processes. The results showed that YL-109 protected against LPS-induced high mortality, cardiac dysfunction, pulmonary and intestinal injury through inhibiting the proinflammatory response, NLRP3 expression and pyroptosis-associated indicators in mouse tissues. YL-109 suppressed LPS-initiated cytokine release, pyroptosis and pyroptosis-related protein expression in HL-1, IEC-6 and MLE-12 cells, which was consistent with the results of the in vivo experiments. Mechanistically, YL-109 reduces phosphorylated ERK (extracellular signal-regulated kinase) levels and NF-κB activation, which are achieved through upregulating CHIP (carboxy terminus of Hsc70-interacting protein) expression, thereby inhibiting c-Jun and c-Fos activation as well as NLRP3 expression. As an E3 ligase, CHIP overexpression obviously promoted the degradation of phosphorylated ERK and inhibited the expression of NF-κB-mediated NLRP3 in cells stimulated with LPS. The protective effects of YL-109 against cardiac, pulmonary and intestinal damage, inflammation and pyroptosis caused by LPS were eliminated in CHIP knockout mice. Our results not only reveal the protective effect and molecular mechanism of YL-109 against LPS-mediated organs damage but also provide additional insights into the effect of CHIP on negatively regulating pyroptosis and inflammatory pathways.


Assuntos
Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Insuficiência de Múltiplos Órgãos , Piroptose , Sepse , Fator de Transcrição AP-1 , Ubiquitina-Proteína Ligases , Regulação para Cima , Animais , Piroptose/efeitos dos fármacos , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Camundongos , Regulação para Cima/efeitos dos fármacos , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/prevenção & controle , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Masculino , Fator de Transcrição AP-1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Benzotiazóis/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
12.
Mol Cell Proteomics ; 23(6): 100770, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641226

RESUMO

Inhalation of crystalline silica dust induces incurable lung damage, silicosis, and pulmonary fibrosis. However, the mechanisms of the lung injury remain poorly understood, with limited therapeutic options aside from lung transplantation. Posttranslational modifications can regulate the function of proteins and play an important role in studying disease mechanisms. To investigate changes in posttranslational modifications of proteins in silicosis, combined quantitative proteome, acetylome, and succinylome analyses were performed with lung tissues from silica-injured and healthy mice using liquid chromatography-mass spectrometry. Combined analysis was applied to the three omics datasets to construct a protein landscape. The acetylation and succinylation of the key transcription factor STAT1 were found to play important roles in the silica-induced pathophysiological changes. Modulating the acetylation level of STAT1 with geranylgeranylacetone effectively inhibited the progression of silicosis. This report revealed a comprehensive landscape of posttranslational modifications in silica-injured mouse and presented a novel therapeutic strategy targeting the posttranslational level for silica-induced lung diseases.


Assuntos
Lisina , Processamento de Proteína Pós-Traducional , Proteoma , Fator de Transcrição STAT1 , Silicose , Animais , Silicose/metabolismo , Silicose/tratamento farmacológico , Silicose/patologia , Fator de Transcrição STAT1/metabolismo , Proteoma/metabolismo , Lisina/metabolismo , Acetilação/efeitos dos fármacos , Camundongos , Dióxido de Silício , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos Endogâmicos C57BL , Proteômica/métodos , Masculino , Ácido Succínico/metabolismo
13.
Sci Rep ; 14(1): 8201, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589634

RESUMO

The α-tubulin subtype, Tubulin α-1b chain (TUBA1B), has been shown to influence immune cell infiltration, cancer growth, and survival across various malignancies. However, a comprehensive study has not yet been undertaken examining the immunological and predictive effects of TUBA1B in a pan-carcinoma context. Using data from TCGA, GEO, and other databases, we analyzed TUBA1B expression across various carcinoma types using transcriptional profiling, prognostic implications, genetic and epigenetic alterations, methylation patterns, and immunological significance. To validate our findings, we conducted Western blot analysis to assess TUBA1B protein levels in matched breast cancer tissue samples and performed CCK-8 proliferation assay, flow cytometry, transwell invasion, and migration assays to comprehensively examine the functional impact of TUBA1B on breast cancer cells. Our pan-cancer analysis found TUBA1B upregulation across most tumor types, with varying expression patterns in distinct immune and molecular subtypes. High TUBA1B expression was an independent risk factor and associated with poor prognoses in several cancers, including BRCA, KICH, LGG, LUAD, and MESO. TUBA1B also demonstrates moderate to high diagnostic accuracy in most tumor types. Increased m6A methylation levels were observed in the TUBA1B gene, while its promoter region displayed low methylation levels. TUBA1B's expression impacted some cancers by elevating tumor mutation burden, microsatellite instability, neoantigen formation, immune cell infiltration, and the modulation of immune checkpoints. Functional enrichment analysis highlights TUBA1B's involvement in important cellular processes such as the cell cycle, p53 signaling, cell senescence, programmed cell death, and the regulation of immune-related pathways. Moreover, our study reveals higher TUBA1B protein expression in breast cancer tissues compared to adjacent tissues. In vitro experiments confirm that TUBA1B deletion reduces breast cancer cell proliferation, invasion, and migration while increasing apoptosis. In conclusion, our study suggests that TUBA1B could potentially serve as a diagnostic marker for predicting cancer immunological profiles and survival outcomes and shed light on the expression and role of TUBA1B in breast cancer, providing a solid foundation for considering it as a promising therapeutic target for breast cancer patient treatment.


Assuntos
Neoplasias da Mama , Carcinoma , Humanos , Feminino , Neoplasias da Mama/genética , Tubulina (Proteína)/genética , Prognóstico , Biomarcadores
14.
J Evid Based Dent Pract ; 24(1): 101933, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38448118

RESUMO

OBJECTIVES: Accuracy is a crucial factor when assessing the quality of digital impressions. This systematic review aims to assess the accuracy of intraoral scan (IOS) in obtaining digital impressions of edentulous jaws. METHODS: This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and was registered in the International Prospective Register of Systematic Reviews (PROSPERO ID: CRD42022382983). A thorough retrieval of 7 electronic databases was undertaken, encompassing MEDLINE (PubMed), Web of Science, EMBASE, Scopus, Cochrane Library, Virtual Health Library, and Open gray, through September 11, 2023. A snowball search was performed by tracing the reference lists of the included studies. The Population, Intervention, Comparison, and Outcome (PICO) question of this systematic review was: "What is the accuracy of intraoral scan in obtaining digital impressions of edentulous arches?" The Modified Methodological Index for Nonrandomized Studies (MINORS) was employed to assess the risk of bias. RESULTS: Among the studies retrieved from databases and manual search, a total of 25 studies were selected for inclusion in this systematic review, including 9 in vivo and 16 in vitro studies. Twenty-one of the included studies utilized the 3D deviation analysis method, while 4 studies employed the linear or angular deviation analysis method. The accuracy results of in vitro studies indicated a trueness range of 20-600 µm and a precision range of 2-700 µm. Results of in vivo studies indicated a trueness range of 40-1380 µm, while the precision results were not reported. CONCLUSION: According to the results of this study, direct digital impressions by IOS cannot replace the conventional impressions of completely edentulous arches in vivo. Edentulous digital impressions by IOS demonstrated poor accuracy in peripheral areas with mobile tissues, such as the soft palate, vestibular sulcus, and sublingual area.

16.
Acad Radiol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38555183

RESUMO

PURPOSE: Ultrasound is the imaging modality of choice for preoperative diagnosis of lymph node metastasis (LNM) in thyroid cancer (TC), yet its efficacy remains suboptimal. As radiomics gains traction in tumor diagnosis, its integration with ultrasound for LNM differentiation in TC has emerged, but its diagnostic merit is debated. This study assesses the accuracy of ultrasound-integrated radiomics in preoperatively diagnosing LNM in TC. METHODS: Literatures were searched in PubMed, Embase, Cochrane, and Web of Science until July 11, 2023. Quality of the studies was assessed by the radiomics quality score (RQS). A meta-analysis was executed using a bivariate mixed effects model, with a subgroup analysis based on modeling variables (clinical features, radiomics features, or their combination). RESULTS: Among 27 articles (16,410 TC patients, 6356 with LNM), the average RQS was 16.5 (SD:5.47). Sensitivity of the models based on clinical features, radiomics features, and radiomics features plus clinical features were 0.64, 0.76 and 0.69. Specificities were 0.77, 0.78 and 0.82. SROC values were 0.76, 0.84 and 0.81. CONCLUSION: Ultrasound-based radiomics effectively evaluates LNM in TC preoperatively. Adding clinical features does not notably enhance the model's performance. Some radiomics studies showed high bias, possibly due to the absence of standard application guidelines.

17.
Phytomedicine ; 128: 155509, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452403

RESUMO

BACKGROUND: Chronic intestinal inflammatory diseases play a crucial role in the onset of colorectal cancer (CRC). Effectively impeding the progression of colitis-associated colorectal cancer (CAC) can be instrumental in hindering CRC development. Wu-Mei-Pill (WMP), a formulation comprising various herbal extracts, is clinically employed for CAC treatment, yet the underlying mechanism of WMP's efficacy in CAC remains unclear. Our study firstly demonstrated the effects and mechanisms of WMP on transcriptional and metabolic levels based on integrated transcriptomics and untargeted metabolomics and relative experimental validations. MATERIALS AND METHODS: A CAC mouse model was established through a single injection of azoxymethane (AOM) followed by intermittent dextran sodium sulfate (DSS) intervention, with subsequent WMP administration. Initially, the therapeutic impact of WMP on the CAC model was assessed by observing survival rate, body weight change, colon length, tumor number, tumor load, and pathological changes in the colon tissue of CAC mice post-WMP intervention. Subsequently, differential genes and metabolites in the colorectal tissue of CAC mice following WMP intervention were identified through transcriptomics and non-targeted metabolomics. Finally, the influence of WMP on the peroxisome proliferator activated receptor (PPAR) pathway, Wnt pathway, and CC motif chemokine ligand 3 (CCL3)/ CC motif chemokine receptor 1 (CCR1) axis in CAC mice was verified through western blot, immunofluorescence, and ELISA based on the results of transcriptomics and non-targeted metabolomics. RESULTS: WMP intervention enhanced survival, alleviated body weight loss, shortened colon length, tumor occurrence, and pathological changes in the colorectal tissue of CAC mice, such as glandular damage, tumourigenesis, and inflammatory cell infiltration. Transcriptomic and non-targeted metabolomic results revealed that WMP intervention up-regulated the expression of key regulatory mechanisms of fatty acid oxidation PPAR pathway-related genes (Pparg, Ppara, Cpt1a, and Acadm) and metabolites (L-carnitine and L-palmitoylcarnitine). Additionally, it down-regulated Wnt pathway-related genes (Wnt3, Axin2, Tcf7, Mmp7, Lgr5, Wnt5a, Fzd6, Wnt7b, Lef1, and Fzd10 etc.) and pro-inflammatory related genes (Il1b, Il6, Il17a, Ccl3, and Ccr1 etc.). Experimental validation demonstrated that WMP up-regulated PPAR pathway-related proteins [PPARγ, PPARα, carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA dehydrogenase medium chain (ACADM)] in the colorectal tissue of CAC mice. It also down-regulated Wnt pathway-related proteins [ß-catenin, T-cell factor (TCF), lymphoid enhancer-binding factor (LEF), and matrix metallopeptidase 7 (MMP7)], inhibited the nuclear translocation of the key transcription factor ß-catenin in the Wnt pathway, and suppressed epithelial-to-mesenchymal transition (EMT) activation induced by the Wnt pathway (up-regulated E-cadherin and down-regulated Vimentin). Furthermore, WMP intervention reduced pro-inflammatory factors [interleukin (IL)-6, IL-1ß, and IL-17A] and decreased CCL3/CCR1 axis factors, including CCL3 protein levels and diminished F4/80+CCR1+ positive expressed cells. CONCLUSION: WMP significantly inhibits CAC tumorigenesis by up-regulating PPARα-mediated fatty acid oxidation, inhibiting the Wnt signaling pathway-mediated EMT, and suppressing CCL3/CCR1-mediated inflammatory responses.


Assuntos
Azoximetano , Neoplasias Associadas a Colite , Sulfato de Dextrana , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Metabolômica , Transcriptoma , Animais , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Masculino , Neoplasias Colorretais , Camundongos Endogâmicos C57BL , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Colite/induzido quimicamente
18.
Life (Basel) ; 14(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38398710

RESUMO

In recent years, short-term composting techniques have been widely applied in oyster mushroom cultivation, but there is still a lack of systematic research on their impact on the nutritional and functional properties of fruiting bodies. In this study, the microbial inoculant Streptomyces thermoviolaceus BUA-FM01 (ST) was applied in the short-term composting process for oyster mushroom cultivation. The agronomic traits, nutritional composition, flavor compounds, and antioxidant activity of fruiting bodies from the first three flushes were evaluated. The results show that microbial inoculation significantly (p < 0.05) reduced the total carbon content and C/N ratio of the composted substrates and, furthermore, increased the total yield of the fruiting bodies. Moreover, microbial inoculation significantly (p < 0.05) increased the crude protein, crude polysaccharide, total amino acid, and essential amino acid contents of the fruiting bodies. The fruiting bodies of the first flush of ST treatment possessed the highest umami amino acid content and equivalent umami concentration value. Furthermore, microbial inoculation significantly (p < 0.05) enhanced the scavenging ability of crude polysaccharides toward free radicals. The results indicate that microbial inoculation has many benefits for the composting cultivating process of oyster mushrooms and good application prospects.

19.
Water Environ Res ; 96(2): e11004, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38369667

RESUMO

Microbial communities living in different environments can affect the transformation of nitrogen and phosphorus in sewage pipes. Two different environments were simulated to investigate the differences in the transformation of nitrogen and phosphorus under different microbial communities in the pipe. Results showed that the concentration of nitrogen and phosphorus changed greatly in the first 25-33 days and the first 21 days, respectively, and then remained stable. The decrease in amino acid nitrogen (AAN) concentration and the increase in ammonia nitrogen (NH4 + -N) concentration in the sediments were evident in the contrast group. The concentrations of total phosphorus (TP), dissolved total phosphorus (DTP), and dissolved reactive phosphorus (DRP) in the overlying water and interstitial water decreased, and that of TP in the sediment increased. Some microorganisms in the sediments of both groups are related to the transformation of nitrogen and phosphorus, such as Clostridium_sensu_stricto_1, Sporacetigenium, Norank_f__Anaerolineaceae, Norank_f__norank_o__PeM15, and Caldisericum. The relative abundance of these microorganisms was remarkably differed between the two groups, which partly caused the difference in nitrogen and phosphorus transformation among overlying water, interstitial water, and sediment in the two environments. PRACTITIONER POINTS: The concentration of N and P changed greatly in the first 20-30 days. AAN and NH4 + -N in sediments had greater concentration variation in contrast group. In two groups, TP, DTP, and DRP of water decreased, and TP of sediment increased. Microbe related to the transformation of N and P differed between the two groups.


Assuntos
Microbiota , Poluentes Químicos da Água , Esgotos , Fósforo/análise , Nitrogênio/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/química , Água , China
20.
Int J Med Sci ; 21(2): 341-356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169592

RESUMO

The in-situ osmolarity is an important physicochemical factor that regulates cell fate of nucleus pulposus cells (NPCs). Our previous studies demonstrated that reduced N-cadherin (NCDH) expression in nucleus pulposus cells is associated with cellular damage under hyper-osmolarity microenvironment. This study was aimed at exploring the impacts of NCDH on senescence and apoptosis of NPCs, as well as the potential molecular mechanism. By comparing NPCs from patients with lumbar fractures and lumbar disc herniation, we identified a correlation between decreased NCDH expression and increased endoplasmic reticulum stress (ERS), resulting in undesirable cell fate (senescence and apoptosis). After blocking Reactive oxygen species (ROS) or ERS, it was indicated that hyper-osmolarity microenvironment induced ERS was ROS-dependent. Further results demonstrated the correlation in rat NPCs. Upregulation of NCDH expression reduced ROS-dependent ERS, thus limiting undesirable cell fates in vitro. This was further confirmed through the rat tail acupuncture injection model. NCDH overexpression successfully mitigated ERS, preserved extracellular matrix production and alleviating intervertebral disc degeneration in vivo. Together, NCDH can alleviate senescence and apoptosis of NPCs by suppressing ROS-dependent ERS via the ATF4-CHOP signaling axis in the hyper-osmolarity microenvironment, thus highlighting the therapeutic potential of NCDH in combating degenerative disc diseases.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , Humanos , Ratos , Apoptose/genética , Caderinas/genética , Caderinas/metabolismo , Senescência Celular/genética , Estresse do Retículo Endoplasmático/genética , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/terapia , Núcleo Pulposo/metabolismo , Concentração Osmolar , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...