Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cancer Cell Int ; 24(1): 172, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750489

RESUMO

BACKGROUND: Cervical cancer is a human papillomavirus (HPV)-related disease. HPV type 16 (HPV16), which is the predominant cause of cervical cancer, can encode miRNAs (HPV16-miRNAs). However, the role of HPV16-miRNAs in the pathogenesis of cervical cancer remains unclear. METHODS: Human cervical cancer cell lines SiHa (HPV16-positive) and C33A (HPV-negative), and cervical cancer tissues were collected to investigate the expression levels of two HPV16-miRNAs (HPV16-miR-H1 and HPV16-miR-H6). The overexpression and knockdown of HPV16-miR-H1 and HPV16-miR-H6 were performed using the lentiviral vector system and miRNA inhibitors, respectively. RNA-sequencing (RNA-seq) analysis and H3K27ac chromatin immunoprecipitation and sequencing (CHIP-seq) experiments were utilized to explore the roles of HPV16-miR-H1 and HPV16-miR-H6 facilitated by enhancers. CCK8, EdU, transwell, and wound healing assays were performed to verify the effects of HPV16-miR-H1 and HPV16-miR-H6 on cell proliferation and migration. RESULTS: HPV16-miR-H1 and HPV16-miR-H6 were highly expressed in both SiHa cells and tissue samples from HPV16-positive cervical cancer patients. RNA-seq analysis showed that HPV16-miR-H1 and HPV16-miR-H6 induced the upregulation of numerous tumor progression-associated genes. H3K27ac CHIP-seq experiments further revealed that HPV16-miR-H1 and HPV16-miR-H6 modulated the expression of critical genes by regulating their enhancer activity. The functional study demonstrated that HPV16-miR-H1 and HPV16-miR-H6 increased the migratory capacity of SiHa cells. CONCLUSIONS: Our data shed light on the role of HPV16-encoded miRNAs in cervical cancer, particularly emphasizing their involvement in the miRNA-enhancer-target gene system. This novel regulatory mechanism of HPV16-miRNAs provides new insights and approaches for the development of therapeutic strategies by targeting HPV16-positive cervical cancer.

2.
ACS Appl Mater Interfaces ; 14(51): 57082-57091, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36523155

RESUMO

Organic phototransistors (OPTs) based on polymers have attracted substantial attention due to their excellent signal amplification, significant noise reduction, and solution process. Recently, the near-infrared (NIR) detection becomes urgent for OPTs with the increased demand for biomedicine, medical diagnostics, and health monitoring. To achieve this goal, a low working voltage of the OPTs is highly desirable. Therefore, the traditional dielectric gate can be replaced by an electrolyte gate to form electrolyte-gated organic phototransistors (EGOPTs), which are not only able to work at voltages below 1.0 V but also are biocompatible. PCDTPT, one of the most popular narrow band gap donor-acceptor copolymer, has been rarely studied in EGOPTs. In this work, an organic NIR-sensitive EGOPT based on PCDTPT is demonstrated with the detectivity of 7.08 × 1011 Jones and the photoresponsivity of 3.56 A/W at a low operating voltage. In addition, an existing persistent photoconductivity (PPC) phenomenon was also observed when the device was exposed to air. The PPC characteristic of the EGOPT in air has been used to achieve a phototransistor memory, and the gate bias can directly eliminate the PPC as an erasing operation. This work reveals the underlying mechanism of the electrolyte-gated organic phototransistor memories and broadens the application of the EGOPTs.

3.
Opt Express ; 29(10): 14231-14244, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985147

RESUMO

We report on controllable cavity modes by controlling the backscattering by two identical scatterers. Periodic changes of the backscattering coupling between two degenerate cavity modes are observed with the changing angle between two scatterers and elucidated by a theoretical model using two-mode approximation and numerical simulations. The periodically appearing single-peak cavity modes indicate mode degeneracy at diabolical points. Interactions between single quantum dots and cavity modes are then investigated. Enhanced emission of a quantum dot with a six-fold intensity increase is obtained in a microdisk at a diabolical point. This method to control cavity modes allows large-scale integration, high reproducibility and flexible design of the size, the location, the quantity and the shape for scatterers, which can be applied for integrated photonic structures with scatterer-modified light-matter interaction.

4.
J Phys Chem Lett ; 12(8): 2133-2141, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33625855

RESUMO

Two-dimensional (2D) layered hybrid perovskites provide an ideal platform for studying the properties of excitons. Here, we report on a strong triplet-exciton and longitudinal-optical (LO) phonon coupling in 2D (C6H5CH2CH2NH3, PEA)2PbBr4 perovskites. The triplet excitons exhibit strong photoluminescence (PL) in thick perovskite microflakes, and the PL is not detectable for monolayer microflakes. The coupling strength of the triplet exciton-LO phonon is approximately two to three times greater than that of the singlet exciton-LO phonon with a LO phonon energy of about 21 meV. This difference might due to the different locations of singlet excitons located in the well and triplet excitons located in the barrier in the 2D layered perovskite. Revealing the strong coupling of triplet exciton-LO phonon provides a fundamental understanding of many-body interaction in hybrid perovskites, which is useful to develop and optimize the optoelectronic devices based on 2D perovskites in the future.

5.
J Phys Chem Lett ; 8(18): 4431-4438, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28845670

RESUMO

Quasi-two-dimensional Ruddlesden-Popper perovskites driving carrier self-separation have rapidly advanced the development of high-performance optoelectronic devices. However, insightful understanding of carrier dynamics in the perovskites is still inadequate. The distribution of multiple perovskite phases, crucial for carrier separation, is controversial. Here we report a systematic study on carrier dynamics of spin-coated (C6H5CH2CH2NH3)2(CH3NH3)n-1PbnI3n+1 (n = 3 and 5) perovskite thin films. Efficient electrons transfer from small-n to large-n perovskite phases, and holes transfer reversely with time scales from ∼0.3 to 30.0 ps. The multiple perovskite phases are arranged perpendicularly to substrate from small to large n and also coexist randomly in the same horizontal planes. Further, the carrier separation dynamics is tailored by engineering the crystalline structure of the perovskite film, which leads to controllable emission properties. These results have important significance for the design of optoelectronic devices from solar cells, light-emitting diodes, lasers, and so forth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...