Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Front Mol Neurosci ; 16: 1133271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273907

RESUMO

Lysine residues are one of the main sites for posttranslational modifications of proteins, and lysine ubiquitination of the Machado-Joseph disease protein ataxin-3 is implicated in its cellular function and polyglutamine expansion-dependent toxicity. Despite previously undertaken efforts, the individual roles of specific lysine residues of the ataxin-3 sequence are not entirely understood and demand further analysis. By retaining single lysine residues of otherwise lysine-free wild-type and polyglutamine-expanded ataxin-3, we assessed the effects of a site-limited modifiability on ataxin-3 protein levels, aggregation propensity, localization, and stability. We confirmed earlier findings that levels of lysine-free ataxin-3 are reduced due to its decreased stability, which led to a diminished load of SDS-insoluble species of its polyglutamine-expanded form. The isolated presence of several single lysine residues within the N-terminus of polyglutamine-expanded ataxin-3 significantly restored its aggregate levels, with highest fold changes induced by the presence of lysine 8 or lysine 85, respectively. Ataxin-3 lacking all lysine residues presented a slightly increased nuclear localization, which was counteracted by the reintroduction of lysine 85, whereas presence of either lysine 8 or lysine 85 led to a significantly higher ataxin-3 stability. Moreover, lysine-free ataxin-3 showed increased toxicity and binding to K48-linked polyubiquitin chains, whereas the reintroduction of lysine 85, located between the ubiquitin-binding sites 1 and 2 of ataxin-3, normalized its binding affinity. Overall, our data highlight the relevance of lysine residues 8 and 85 of ataxin-3 and encourage further analyses, to evaluate the potential of modulating posttranslational modifications of these sites for influencing pathophysiological characteristics of the Machado-Joseph disease protein.

3.
Cells ; 11(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36497038

RESUMO

Body weight (BW) loss and reduced body mass index (BMI) are the most common peripheral alterations in Huntington disease (HD) and have been found in HD mutation carriers and HD animal models before the manifestation of neurological symptoms. This suggests that, at least in the early disease stage, these changes could be due to abnormal tissue growth rather than tissue atrophy. Moreover, BW and BMI are reported to be more affected in males than females in HD animal models and patients. Here, we confirmed sex-dependent growth alterations in the BACHD rat model for HD and investigated the associated contributing factors. Our results showed growth abnormalities along with decreased plasma testosterone and insulin-like growth factor 1 (IGF-1) levels only in males. Moreover, we demonstrated correlations between growth parameters, IGF-1, and testosterone. Our analyses further revealed an aberrant transcription of testosterone biosynthesis-related genes in the testes of BACHD rats with undisturbed luteinizing hormone (LH)/cAMP/PKA signaling, which plays a key role in regulating the transcription process of some of these genes. In line with the findings in BACHD rats, analyses in the R6/2 mouse model of HD showed similar results. Our findings support the view that mutant huntingtin may induce abnormal growth in males via the dysregulation of gene transcription in the testis, which in turn can affect testosterone biosynthesis.


Assuntos
Proteína Huntingtina , Doença de Huntington , Testosterona , Animais , Feminino , Masculino , Camundongos , Ratos , Encéfalo/metabolismo , Modelos Animais de Doenças , Doença de Huntington/genética , Doença de Huntington/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Testosterona/biossíntese , Proteína Huntingtina/genética
4.
Front Mol Neurosci ; 15: 1020104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385755

RESUMO

Among posttranslational modifications, directed proteolytic processes have the strongest impact on protein integrity. They are executed by a variety of cellular machineries and lead to a wide range of molecular consequences. Compared to other forms of proteolytic enzymes, the class of calcium-activated calpains is considered as modulator proteases due to their limited proteolytic activity, which changes the structure and function of their target substrates. In the context of neurodegeneration and - in particular - polyglutamine disorders, proteolytic events have been linked to modulatory effects on the molecular pathogenesis by generating harmful breakdown products of disease proteins. These findings led to the formulation of the toxic fragment hypothesis, and calpains appeared to be one of the key players and auspicious therapeutic targets in Huntington disease and Machado Joseph disease. This review provides a current survey of the role of calpains in proteolytic processes found in polyglutamine disorders. Together with insights into general concepts behind toxic fragments and findings in polyglutamine disorders, this work aims to inspire researchers to broaden and deepen the knowledge in this field, which will help to evaluate calpain-mediated proteolysis as a unifying and therapeutically targetable posttranslational mechanism in neurodegeneration.

5.
Cell Mol Life Sci ; 79(8): 401, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794401

RESUMO

Machado-Joseph disease (MJD) is characterized by a pathological expansion of the polyglutamine (polyQ) tract within the ataxin-3 protein. Despite its primarily cytoplasmic localization, polyQ-expanded ataxin-3 accumulates in the nucleus and forms intranuclear aggregates in the affected neurons. Due to these histopathological hallmarks, the nucleocytoplasmic transport machinery has garnered attention as an important disease relevant mechanism. Here, we report on MJD cell model-based analysis of the nuclear transport receptor karyopherin subunit beta-1 (KPNB1) and its implications in the molecular pathogenesis of MJD. Although directly interacting with both wild-type and polyQ-expanded ataxin-3, modulating KPNB1 did not alter the intracellular localization of ataxin-3. Instead, overexpression of KPNB1 reduced ataxin-3 protein levels and the aggregate load, thereby improving cell viability. On the other hand, its knockdown and inhibition resulted in the accumulation of soluble and insoluble ataxin-3. Interestingly, the reduction of ataxin-3 was apparently based on protein fragmentation independent of the classical MJD-associated proteolytic pathways. Label-free quantitative proteomics and knockdown experiments identified mitochondrial protease CLPP as a potential mediator of the ataxin-3-degrading effect induced by KPNB1. We confirmed reduction of KPNB1 protein levels in MJD by analyzing two MJD transgenic mouse models and induced pluripotent stem cells (iPSCs) derived from MJD patients. Our results reveal a yet undescribed regulatory function of KPNB1 in controlling the turnover of ataxin-3, thereby highlighting a new potential target of therapeutic value for MJD.


Assuntos
Ataxina-3 , Endopeptidase Clp , Doença de Machado-Joseph , Mitocôndrias , beta Carioferinas , Animais , Ataxina-3/genética , Ataxina-3/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Camundongos , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo
6.
Cell Mol Life Sci ; 79(5): 262, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35482253

RESUMO

Spinocerebellar ataxia type 17 (SCA17) is a neurodegenerative disease caused by a polyglutamine-encoding trinucleotide repeat expansion in the gene of transcription factor TATA box-binding protein (TBP). While its underlying pathomechanism is elusive, polyglutamine-expanded TBP fragments of unknown origin mediate the mutant protein's toxicity. Calcium-dependent calpain proteases are protagonists in neurodegenerative disorders. Here, we demonstrate that calpains cleave TBP, and emerging C-terminal fragments mislocalize to the cytoplasm. SCA17 cell and rat models exhibited calpain overactivation, leading to excessive fragmentation and depletion of neuronal proteins in vivo. Transcriptome analysis of SCA17 cells revealed synaptogenesis and calcium signaling perturbations, indicating the potential cause of elevated calpain activity. Pharmacological or genetic calpain inhibition reduced TBP cleavage and aggregation, consequently improving cell viability. Our work underlines the general significance of calpains and their activating pathways in neurodegenerative disorders and presents these proteases as novel players in the molecular pathogenesis of SCA17.


Assuntos
Calpaína , Ataxias Espinocerebelares , Animais , Calpaína/genética , Calpaína/metabolismo , Neurônios/metabolismo , Ratos , Ataxias Espinocerebelares/metabolismo , Expansão das Repetições de Trinucleotídeos
7.
Biochem Pharmacol ; 168: 305-318, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31283931

RESUMO

Over the last years, the experimental compound olesoxime, a mitochondria-targeting cholesterol derivative, has emerged as a promising drug candidate for neurodegenerative diseases. Numerous preclinical studies have successfully proved olesoxime's neuroprotective properties in cell and animal models of clinical conditions such as amyotrophic lateral sclerosis, Huntington disease, Parkinson disease, peripheral neuropathy and spinal muscular atrophy. The beneficial effects were attributed to olesoxime's potential impact on oxidative stress, mitochondrial permeability transition or cholesterol homoeostasis. Although no significant benefits have been demonstrated in patients of amyotrophic lateral sclerosis, and only the first 12 months of a phase II/III clinical trial showed an improvement in motor symptoms of spinal muscular atrophy, this orphan drug may still offer undiscovered potential in the treatment of neurological diseases. In our earlier preclinical studies, we demonstrated that administration of olesoxime in mouse and rat models of Huntington disease improved psychiatric and molecular phenotypes. Aside from stabilising mitochondrial function, the drug reduced the overactivation of calpains, a class of calcium-dependent proteases entangled in neurodegenerative conditions. This observation may be credited to olesoxime's action on calcium dyshomeostasis, a further hallmark in neurodegeneration, and linked to its targets TSPO and VDAC, two proteins of the outer mitochondrial membrane associated with mitochondrial calcium handling. Further research into the mode of action of olesoxime under pathological conditions, including its effect on neuronal calcium homeostasis, may strengthen the untapped potential of olesoxime or other similar compounds as a therapeutic for neurodegenerative diseases.


Assuntos
Colestenonas/farmacologia , Colestenonas/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Animais , Cálcio/metabolismo , Calpaína/metabolismo , Colestenonas/química , Colesterol/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria/efeitos dos fármacos , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos , Ratos
8.
Biomed Res Int ; 2019: 4741252, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30895192

RESUMO

Proteolytic machineries execute vital cellular functions and their disturbances are implicated in diverse medical conditions, including neurodegenerative diseases. Interestingly, calpains, a class of Ca2+-dependent regulatory proteases, can modulate the degradational system of autophagy by cleaving proteins involved in this pathway. Moreover, both machineries are common players in many molecular pathomechanisms and have been targeted individually or together, as a therapeutic strategy in experimental setups. In this review, we briefly introduce calpains and autophagy, with their roles in health and disease, and focus on their direct pathologically relevant interplay in neurodegeneration and beyond. The modulation of calpain activity may comprise a promising treatment approach to attenuate the deregulation of these two essential mechanisms.


Assuntos
Autofagia , Calpaína/antagonistas & inibidores , Doenças Neurodegenerativas/patologia , Animais , Calpaína/química , Calpaína/metabolismo , Glicoproteínas/farmacologia , Glicoproteínas/uso terapêutico , Humanos , Modelos Biológicos , Doenças Neurodegenerativas/tratamento farmacológico
9.
Stem Cell Res ; 30: 171-174, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29936336

RESUMO

A skin biopsy of a patient with spinocerebellar ataxia type 3 (SCA3, also known as Machado-Joseph disease (MJD)) caused by a CAG trinucleotide repeat expansion in the ATXN3 gene, was used to generate an induced pluripotent stem cell line, HIHCNi002-A (iPSC-SCA3). Skin fibroblasts were reprogrammed using episomal plasmids carrying hOCT4, hSOX2, hKLF4, hL-MYC, and hLIN28. The iPSC-SCA3 line exhibits chromosomal stability with conservation of the ATXN3 repeat expansion, expresses pluripotency markers and differentiates into endo-, meso-, and ectodermal cells in vitro.


Assuntos
Ataxina-3/genética , Ataxina-3/metabolismo , Doença de Machado-Joseph/genética , Adulto , Diferenciação Celular , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Masculino
10.
Proc Natl Acad Sci U S A ; 115(11): E2624-E2633, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29476013

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder caused by a CAG expansion in the ATXN3 gene leading to a polyglutamine expansion in the ataxin-3 protein. The nuclear presence and aggregation of expanded ataxin-3 are critical steps in disease pathogenesis. To identify novel therapeutic targets, we investigated the nucleocytoplasmic transport system by screening a collection of importins and exportins that potentially modulate this nuclear localization. Using cell, Drosophila, and mouse models, we focused on three transport proteins, namely, CRM1, IPO13, KPNA3, and their respective Drosophila orthologs Emb, Cdm, and Kap-α3. While overexpression of CRM1/Emb demonstrated positive effects in Drosophila, KPNA3/Kap-α3 emerged as the most promising target, as knockdown via multiple RNAi lines demonstrated its ability to shuttle both truncated and full-length expanded ataxin-3, rescue neurodegeneration, restore photoreceptor formation, and reduce aggregation. Furthermore, KPNA3 knockout in SCA3 mice resulted in an amelioration of molecular and behavioral disturbances such as total activity, anxiety, and gait. Since KPNA3 is known to function as an import protein and recognize nuclear localization signals (NLSs), this work unites ataxin-3 structure to the nuclear pore machinery and provides a link between karyopherins, NLS signals, and polyglutamine disease, as well as demonstrates that KPNA3 is a key player in the pathogenesis of SCA3.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Ataxina-3/genética , Doença de Machado-Joseph/genética , alfa Carioferinas/genética , Animais , Ataxina-3/metabolismo , Expansão das Repetições de DNA , Modelos Animais de Doenças , Drosophila , Feminino , Células HEK293 , Humanos , Doença de Machado-Joseph/metabolismo , Masculino , Camundongos , Camundongos Knockout , Peptídeos , alfa Carioferinas/metabolismo
11.
Neuropharmacology ; 133: 94-106, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29355642

RESUMO

Deciphering the molecular pathology of Huntington disease is of particular importance, not only for a better understanding of this neurodegenerative disease, but also to identify potential therapeutic targets. The polyglutamine-expanded disease protein huntingtin was shown to undergo proteolysis, which results in the accumulation of toxic and aggregation-prone fragments. Amongst several classes of proteolytic enzymes responsible for huntingtin processing, the group of calcium-activated calpains has been found to be a significant mediator of the disease protein toxicity. To confirm the impact of calpain-mediated huntingtin cleavage in Huntington disease, we analysed the effect of depleting or overexpressing the endogenous calpain inhibitor calpastatin in HEK293T cells transfected with wild-type or polyglutamine-expanded huntingtin. Moreover, we crossbred huntingtin knock-in mice with calpastatin knockout animals to assess its effect not only on huntingtin cleavage and aggregation but also additional molecular markers. We demonstrated that a reduced or ablated expression of calpastatin triggers calpain overactivation and a consequently increased mutant huntingtin cleavage in cells and in vivo. These alterations were accompanied by an elevated formation of predominantly cytoplasmic huntingtin aggregates. On the other hand, overexpression of calpastatin in cells attenuated huntingtin fragmentation and aggregation. In addition, we observed an enhanced cleavage of DARPP-32, p35 and synapsin-1 in neuronal tissue upon calpain overactivation. Our results corroborate the important role of calpains in the molecular pathogenesis of Huntington disease and endorse targeting these proteolytic enzymes as a therapeutic approach.


Assuntos
Calpaína/metabolismo , Proteínas do Citoesqueleto/deficiência , Regulação da Expressão Gênica/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Análise de Variância , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Calpaína/genética , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Glicoproteínas/farmacologia , Células HEK293 , Humanos , Proteína Huntingtina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sinapsinas/metabolismo , Transfecção
12.
J Neurochem ; 138(1): 150-62, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26990650

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominantly inherited neurodegenerative disorder for which no curative therapy is available. The cause of this disease is the expansion of a CAG repeat in the so-called ATXN3 gene leading to an expanded polyglutamine stretch in the ataxin-3 protein. Although the function of ataxin-3 has been defined as a deubiquitinating enzyme, the pathogenic pathway underlying SCA3 remains to be deciphered. Besides others, also the glutamatergic system seems to be altered in SCA3. The antiglutamatergic substance riluzole has thus been suggested as a potential therapeutic agent for SCA3. To assess whether riluzole is effective in the treatment of SCA3 in vivo, we used a phenotypically well-characterized conditional mouse model previously generated by us. Treatment with 10 mg/kg riluzole in the drinking water was started when mice showed impairment in rotarod performance. Post-symptomatic treatment with riluzole carried out for a period of 10 months led to reduction of the soluble ataxin-3 level and an increase in ataxin-3 positive accumulations, but did not improve motor deficits measured by rotarod. There was also no positive effect on home cage behavior or body weight. We even observed a pronounced reduction of calbindin expression in Purkinje cells in riluzole-treated mice. Thus, long-term treatment with riluzole was not able to alleviate disease symptoms observed in transgenic SCA3 mice and should be considered with caution in the treatment of human patients. Assessing riluzole as a potential treatment for spinocerebellar ataxia type 3 (SCA3) had no beneficial, but rather a worsening effect on our transgenic SCA3 mouse model. We hypothesize that: Riluzole treatment enhanced glutamate release in ATXN3-expressing cells leading to an increased Ca(2+) influx resulting in Purkinje cell damage shown by loss of calbindin expression.


Assuntos
Ataxina-3/metabolismo , Doença de Machado-Joseph/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Proteínas Repressoras/metabolismo , Riluzol/uso terapêutico , Animais , Ataxina-3/genética , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Calbindinas/metabolismo , Modelos Animais de Doenças , Transferência Ressonante de Energia de Fluorescência , Humanos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Príons/genética , RNA Mensageiro/metabolismo , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Proteínas Repressoras/genética , Teste de Desempenho do Rota-Rod
13.
Biomed Res Int ; 2014: 701758, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309920

RESUMO

The history of polyglutamine diseases dates back approximately 20 years to the discovery of a polyglutamine repeat in the androgen receptor of SBMA followed by the identification of similar expansion mutations in Huntington's disease, SCA1, DRPLA, and the other spinocerebellar ataxias. This common molecular feature of polyglutamine diseases suggests shared mechanisms in disease pathology and neurodegeneration of disease specific brain regions. In this review, we discuss the main pathogenic pathways including proteolytic processing, nuclear shuttling and aggregation, mitochondrial dysfunction, and clearance of misfolded polyglutamine proteins and point out possible targets for treatment.


Assuntos
Degeneração Neural/patologia , Peptídeos/metabolismo , Transdução de Sinais , Animais , Humanos , Mitocôndrias/metabolismo , Agregação Patológica de Proteínas , Proteólise
14.
PLoS One ; 8(4): e62043, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626768

RESUMO

Spinocerebellar Ataxia Type 3 (SCA3), also known as Machado-Joseph disease, is an autosomal dominantly inherited neurodegenerative disease caused by an expanded polyglutamine stretch in the ataxin-3 protein. A pathological hallmark of the disease is cerebellar and brainstem atrophy, which correlates with the formation of intranuclear aggregates in a specific subset of neurons. Several studies have demonstrated that the formation of aggregates depends on the generation of aggregation-prone and toxic intracellular ataxin-3 fragments after proteolytic cleavage of the full-length protein. Despite this observed increase in aggregated mutant ataxin-3, information on soluble mutant ataxin-3 levels in brain tissue is lacking. A quantitative method to analyze soluble levels will be a useful tool to characterize disease progression or to screen and identify therapeutic compounds modulating the level of toxic soluble ataxin-3. In the present study we describe the development and application of a quantitative and easily applicable immunoassay for quantification of soluble mutant ataxin-3 in human cell lines and brain samples of transgenic SCA3 mice. Consistent with observations in Huntington disease, transgenic SCA3 mice reveal a tendency for decrease of soluble mutant ataxin-3 during disease progression in fractions of the cerebellum, which is inversely correlated with aggregate formation and phenotypic aggravation. Our analyses demonstrate that the time-resolved Förster resonance energy transfer immunoassay is a highly sensitive and easy method to measure the level of soluble mutant ataxin-3 in biological samples. Of interest, we observed a tendency for decrease of soluble mutant ataxin-3 only in the cerebellum of transgenic SCA3 mice, one of the most affected brain regions in Spinocerebellar Ataxia Type 3 but not in whole brain tissue, indicative of a brain region selective change in mutant ataxin-3 protein homeostasis.


Assuntos
Cerebelo/metabolismo , Doença de Machado-Joseph/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Fatores Etários , Sequência de Aminoácidos , Animais , Ataxina-3 , Linhagem Celular , Modelos Animais de Doenças , Progressão da Doença , Fluorimunoensaio/métodos , Expressão Gênica , Humanos , Doença de Machado-Joseph/genética , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Células de Purkinje/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transgenes
15.
Hum Mol Genet ; 22(3): 508-18, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23100324

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is pathologically characterized by the formation of intranuclear aggregates which contain ataxin-3, the mutated protein in SCA3, in a specific subtype of neurons. It has been proposed that ataxin-3 is cleaved by proteolytic enzymes, in particular by calpains and caspases, eventually leading to the formation of aggregates. In our study, we examined the ability of calpains to cleave ataxin-3 in vitro and in vivo. We demonstrated in cell culture and mouse brain homogenates that cleavage of overexpressed ataxin-3 by calpains and in particular by calpain-2 occur and that polyglutamine expanded ataxin-3 is more sensitive to calpain degradation. Based on these results, we investigated the influence of calpains on the pathogenesis of SCA3 in vivo. For this purpose, we enhanced calpain activity in a SCA3 transgenic mouse model by knocking out the endogenous calpain inhibitor calpastatin. Double-mutant mice demonstrated an aggravated neurological phenotype with an increased number of nuclear aggregates and accelerated neurodegeneration in the cerebellum. This study confirms the critical importance of calcium-dependent calpain-type proteases in the pathogenesis of SCA3 and suggests that the manipulation of the ataxin-3 cleavage pathway and the regulation of intracellular calcium homeostasis may represent novel targets for therapeutic intervention in SCA3.


Assuntos
Calpaína/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Ataxina-3 , Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Calpaína/antagonistas & inibidores , Cerebelo/metabolismo , Cerebelo/patologia , Modelos Animais de Doenças , Deleção de Genes , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Genótipo , Glicoproteínas/metabolismo , Células HEK293 , Homeostase , Humanos , Imuno-Histoquímica , Doença de Machado-Joseph/metabolismo , Camundongos , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Peptídeos , Fenótipo , Proteínas Repressoras/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...