Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29655816

RESUMO

Reproduction is an essential process for life and is regulated by complex hormone networks and environmental factors. To date, little is known about the contribution of epigenetic mechanisms to the regulation of reproduction, particularly in lower vertebrates. We used the zebrafish (Danio rerio) model to investigate the sex-specific transcription and DNA methylation profiles for genes involved in the regulation of reproduction and in epigenetic signalling in the livers and gonads. We found evidence for associations between DNA promotor methylation and transcription for esr1 (gonads and female livers), amh (gonads) and dnmt1 (livers). In the liver, esr1 was shown to be significantly over-expressed in females compared to males, and its promoter was significantly hypo-methylated in females compared to males. In the gonads, genes involved in epigenetic processes including dnmt1, dnmt3 and hdac1 were over-expressed in the ovary compared to the testis. In addition, dnmt1 and dnmt3 transcription in the testis was found to be strongly correlated with global DNA methylation. These data provide evidence of the sex-specific epigenetic regulation and transcription of genes involved in reproduction and epigenetic signalling in a commonly used vertebrate model.


Assuntos
Metilação de DNA , Epigênese Genética , Fígado/metabolismo , Ovário/metabolismo , Fatores Sexuais , Testículo/metabolismo , Transcrição Gênica , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Sequência de Bases , DNA (Citosina-5-)-Metiltransferase 1/genética , Receptor alfa de Estrogênio/genética , Feminino , Masculino , Regiões Promotoras Genéticas , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Reprodução
2.
Epigenetics ; 11(7): 526-38, 2016 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-27120497

RESUMO

Bisphenol A (BPA) is a commercially important high production chemical widely used in epoxy resins and polycarbonate plastics, and is ubiquitous in the environment. Previous studies demonstrated that BPA activates estrogenic signaling pathways associated with adverse effects on reproduction in vertebrates and that exposure can induce epigenetic changes. We aimed to investigate the reproductive effects of BPA in a fish model and to document its mechanisms of toxicity. We exposed breeding groups of zebrafish (Danio rerio) to 0.01, 0.1, and 1 mg/L BPA for 15 d. We observed a significant increase in egg production, together with a reduced rate of fertilization in fish exposed to 1 mg/L BPA, associated with significant alterations in the transcription of genes involved in reproductive function and epigenetic processes in both liver and gonad tissue at concentrations representing hotspots of environmental contamination (0.1 mg/L) and above. Of note, we observed reduced expression of DNA methyltransferase 1 (dnmt1) at environmentally relevant concentrations of BPA, along with a significant reduction in global DNA methylation, in testes and ovaries following exposure to 1 mg/L BPA. Our findings demonstrate that BPA disrupts reproductive processes in zebrafish, likely via estrogenic mechanisms, and that environmentally relevant concentrations of BPA are associated with altered transcription of key enzymes involved in DNA methylation maintenance. These findings provide evidence of the mechanisms of action of BPA in a model vertebrate and advocate for its reduction in the environment.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Compostos Benzidrílicos/toxicidade , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/efeitos dos fármacos , Estrogênios não Esteroides/toxicidade , Fertilização/efeitos dos fármacos , Fenóis/toxicidade , Proteínas de Peixe-Zebra/genética , Animais , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Epigênese Genética/efeitos dos fármacos , Genoma , Gônadas/efeitos dos fármacos , Fígado/efeitos dos fármacos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Plant Dis ; 98(10): 1423, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30703981

RESUMO

Sugar beet (Beta vulgaris L.) is not currently a commercial crop in Georgia, but experimental plantings as a winter rotational crop are promising in terms of yield and industrial sugar production (T. Brenneman, personal communication). A disease outbreak of suspected bacterial origin occurred in sugar beet plots (experimental lines Beta Seed energy beet 'BTS ENC115,' 'BTS EGC184,' 'BTS EGC195,' and 'BTS 1EN6702') in Tift Co., GA, in December 2012, at ~35% incidence. Foliar symptoms included circular to irregular spots, each with a tan center and dark margin. Ten leaves/experimental line with leaf spot symptoms were collected, and bacterial isolations made on King's B agar medium. After 48 h of incubation, cream-colored, fluorescent yellow, round colonies with smooth margins were isolated. The isolates were each gram negative, oxidase negative, non-pectolytic on potato, arginine dihydrolase negative, produced levan, and gave a hypersensitivity response (HR) on tobacco. These characteristics indicated that the isolates belonged to Pseudomonas syringae van Hall LOPAT group Ia (3). The 16S-23S rRNA (internal transcribed regions) (1) from four foliar isolates (SB-1, SB-2, SB-3, and SB-4), one/experimental line, was amplified, and the resultant PCR products were sequenced and BLAST searched in GenBank. The 16S-23S rRNA sequences matched those of P. syringae pv. syingae (Pss) (KF023189) and P. syringae pv. aptata (Psa) (AY342167.1) with 96 to 98% and 97 to 99% sequence identity, respectively. Also, the percent similarity of the 16S-23S rRNA sequences among the four isolates was >99% (KJ922021 to 24 for SB-1 to SB-4, respectively). The four test isolates also had ≤89 and ≤99% similarity with Pss and Psa, respectively, when tested with BIOLOG (Hayward, CA). In addition, four sugarbeet isolates along with a type strain of Psa (NCPPB 3539) were amplified using a PCR primer pair that detected the presence of the avrPphE gene, an avirulence gene present in Psa but absent in Pss (2). The type strain of Pss (NCPPB 1770) was not amplified using this primer pair. BOX-PCR analysis gave identical banding patterns for the four isolates as that of a type strain of Psa. In two independent experiments, 3-week-old seedlings of the sugar beet cv. Beta EGR099 (n = 10 seedlings/isolate/experiment) were spray-inoculated with a sterilized water suspension of 1 × 108 CFU/ml of each of the isolates. All of the inoculated seedlings developed symptoms (water-soaked lesions that developed into necrotic spots) 10 days after inoculation (DAI) in greenhouse conditions (~30°C and ~80% RH). All of the seedlings inoculated with the type strain of Psa also produced typical bacterial blight symptoms at 10 DAI. In contrast, five control seedlings inoculated with sterilized water remained asymptomatic, and target bacterial colonies were not re-isolated from the leaves of these plants. Bacterial colonies were re-isolated from symptomatic seedlings, and showed similar characteristics based on physiological tests, BIOLOG profile, BOX-PCR analysis, and positive amplification with the avrPphE PCR assay, which indicated that these strains were Psa. To our knowledge, this is the first report of Psa in sugarbeet in Georgia. The fact that a Psa strain was also isolated from a sugar beet seed lot (data not shown) suggested that the pathogen may have been introduced on contaminated seeds. Knowledge of the presence of Psa in the agro-ecosystem of Georgia may encourage scientists to implement integrated management practices for this pathogen. References: (1) C. Guasp et al. Int. J. Syst. Evol. Microbiol. 50:1629, 2000. (2) Y. Inoue and Y. Takikawa. Page 687 in: Presentations 6th Int. Conf. Pseudomonas syringae Pathovars and Related Pathogens, 2003. (3) R. A. Lelliot et al. J. Appl. Bacteriol. 29:470, 1966.

4.
Environ Sci Technol ; 47(15): 8869-77, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23834071

RESUMO

Worldwide, a number of viable populations of fish are found in environments heavily contaminated with metals, including brown trout (Salmo trutta) inhabiting the River Hayle in South-West of England. This population is chronically exposed to a water-borne mixture of metals, including copper and zinc, at concentrations lethal to naïve fish. We aimed to investigate the molecular mechanisms employed by the River Hayle brown trout to tolerate high metal concentrations. To achieve this, we combined tissue metal analysis with whole-transcriptome profiling using RNA-seq on an Illumina platform. Metal concentrations in the Hayle trout, compared to fish from a relatively unimpacted river, were significantly increased in the gills, liver and kidney (63-, 34- and 19-fold respectively), but not the gut. This confirms that these fish can tolerate considerable metal accumulation, highlighting the importance of these tissues in metal uptake (gill), storage and detoxification (liver, kidney). We sequenced, assembled and annotated the brown trout transcriptome using a de novo approach. Subsequent gene expression analysis identified 998 differentially expressed transcripts and functional analysis revealed that metal- and ion-homeostasis pathways are likely to be the most important mechanisms contributing to the metal tolerance exhibited by this population.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Truta/genética , Animais
5.
Plant Dis ; 88(7): 771, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30812498

RESUMO

Impatiens necrotic spot virus (INSV), family Bunyaviridae, genus Tospovirus, is an emerging virus found mostly in ornamentals under greenhouse production. INSV has been detected in peanut (Arachis hypogaea L.) in Georgia and Texas (3) and recently in tobacco (Nicotiana tabacum L.) in the southeastern United States (2) but little is known about INSV distribution and impact on these crops. Noncrop plant hosts are likely to contribute to disease spread by serving as reservoirs for the virus and reproductive hosts for thrips (Frankliniella occidentalis Pergande), which transmit the virus. Yellow nutsedge, a native of North America, and purple nutsedge introduced from Eurasia, are considered serious weed problems in the southeastern United States. To date, there are no reports of natural INSV infections in these weeds. A survey was conducted at two research farms in Tift County, Georgia to determine if yellow and purple nutsedge plants were naturally infected with Tomato spotted wilt virus (TSWV) and INSV. The first field at the Black Shank Farm had been planted with flue-cured tobacco K-326 earlier in the year and fallow at the time of sampling. The second field at the Ponder Farm was planted at the time of sampling with yellow squash (Cucurbita pepo L.) and cabbage (Brassica oleracea L.). In early October 2002, 90 nutsedge plants were taken at random from each site. Leaf and root tissues of each of the nutsedge plants were tested for TSWV and INSV using double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) alkaline phosphatase antisera kits (Agdia Inc., Elkhart, IN). No visible symptoms of INSV or TSWV were observed. Samples from the field at the Black Shank Farm resulted in 2 of 26 positive for INSV in purple nutsedge plants and 6 of 64 in yellow nutsedge plants. At the Ponder Farm, 3 of 12 were positive for INSV in purple nutsedge plants and 14 of 78 in yellow nutsedge plants. None of the samples in either site tested positive for TSWV. The DAS-ELISA positive samples were verified for INSV using reverse transcription-polymerase chain reaction (RT-PCR) as previously described by Dewey et al. (1). Total RNA extracts were obtained from the DAS-ELISA positive nutsedge samples using RNeasy extraction kits (Qiagen Inc., Valencia, CA). The RT-PCR was carried out with primer 1F: 5'-TCAAG(C/T) CTTC(G/T)GAA(A/G)GTGAT 3' (1) and primer 2R: 5'-ATGAACAAAGCAAAGATTACC 3' specific to the 3' end of the INSV N gene open reading frame (GenBank Accession No. NC003624). DAS-ELISA negative tissues of Cyperus esculentus L. and Emilia sonchifolia (L.) DC and an E. sonchifolia DAS-ELISA positive for INSV were included in the reactions as controls. All of the DAS-ELISA positive nutsedge samples yielded an amplification product with the expected size of 298 bp when PCR products were resolved by agarose (0.7%) gel electrophoresis. The relatively high occurrence of INSV found in the sampled fields may explain the recent increase in incidence of INSV in susceptible field crops. Although yellow nutsedge is more common than purple nutsedge in North America, the potential for dispersal of INSV in both species could be significant because of the nature of nutsedge tuber survival and spreading capabilities. References: (1) R. A. Dewey et al. J. Virol. Methods 56:19, 1996. (2) N. Martínez-Ochoa et al. On-line publication. doi:10.1094/PHP-2003-0417-01-HN. Plant Health Progress, 2003. (3) S. S. Pappu et al. Plant Dis. 83:966,1999.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...