Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Org Chem ; 89(12): 9110-9117, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38857432

RESUMO

Inhibition of human ornithine aminotransferase interferes with glutamine and proline metabolism in hepatocellular carcinoma, depriving tumors of essential nutrients. A proposed mechanism-based inhibitor containing a bicyclo[3.1.1]heptanol warhead is reported herein. The proposed inactivation mechanism involves a novel α-iminol rearrangement. The synthesis of the proposed inhibitor features an asymmetric intramolecular Mannich reaction, utilizing a chiral sulfinamide. This study presents a novel approach toward the synthesis of functionalized bicyclo[3.1.1]heptanes and highlights an underutilized method to access enantiopure exocyclic amines.


Assuntos
Ácidos Carboxílicos , Estereoisomerismo , Ácidos Carboxílicos/química , Estrutura Molecular , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/síntese química , Humanos
2.
ACS Cent Sci ; 10(1): 87-103, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38292603

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure, and current treatment options are very limited. Previously, we performed a high-throughput screen to identify small molecules that inhibit protein aggregation caused by a mutation in the gene that encodes superoxide dismutase 1 (SOD1), which is responsible for about 25% of familial ALS. This resulted in three hit series of compounds that were optimized over several years to give three compounds that were highly active in a mutant SOD1 ALS model. Here we identify the target of two of the active compounds (6 and 7) with the use of photoaffinity labeling, chemical biology reporters, affinity purification, proteomic analysis, and fluorescent/cellular thermal shift assays. Evidence is provided to demonstrate that these two pyrazolone compounds directly interact with 14-3-3-E and 14-3-3-Q isoforms, which have chaperone activity and are known to interact with mutant SOD1G93A aggregates and become insoluble in the subcellular JUNQ compartment, leading to apoptosis. Because protein aggregation is the hallmark of all neurodegenerative diseases, knowledge of the target compounds that inhibit protein aggregation allows for the design of more effective molecules for the treatment of ALS and possibly other neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...