Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 477: 135337, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39067299

RESUMO

Transition metals are promising catalysts for environmental remediation. However, their low reactivity, poor stability and weak reusability largely limit practical applications. Herein, we report that the electron-rich dissolved black carbon (DBC) incorporated into the nanoscale zero-valent copper (nZVCu) can boost intrinsic reactivity, structural stability and cyclic reusability for superior peroxymonosulfate (PMS) activation and pollutant degradation. A series of refractory pollutants can be effectively removed on the DBC/nZVCu, in comparison with the nZVCu reference. Hydroxyl radical (‧OH) is identified as the dominant reactive oxygen species by electron spin resonance (ESR) and chemical quenching tests, mediated by the metastable Cu(III) as the key reactive intermediate. The electron-rich DBC protects nanoscale Cu from oxidative corrosion to slow down the surface formation of inert CuO layer, rendered by the thermodynamically and dynamically capacitive regulation of corrosive electron transfer from metallic core. By this refining way, the conducive DBC improves the neighboring utilization of reactive electron during metal corrosion, oxidant activation, radical generation and pollutant degradation in Fenton-like catalysis. Our findings suggest that the ubiquitous DBC can be an efficient chelating agent to refine transition metals by serving as the surface deactivator and electron mediator, and take new insights into their environmental and agricultural geochemistry.

2.
Sci Total Environ ; 921: 171145, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395167

RESUMO

Ubiquitous humic substances usually exhibit strong interfering effects on target pollutant removal in advanced water purification. This work aims to develop a photochemical conversion system on the nonstoichiometric TiO2 for pollutant removal in environmentally relevant matrices. In this synergistic reaction system, the redox-reactive humic substances and defective oxygen vacancies can serve as the organic electron transfer mediator and the key surface reactive sites, respectively. This system achieves a superior pollutant degradation in real surface water at low oxidant concentrations. Reactive oxygen vacancies on the TiO2 surface and sub-surface are of considerable interest for this photochemical reaction system. By engineering defective oxygen vacancies on high-energy {001} polar facet, the surface and electronic interactions between tailored TiO2 and humic substances are greatly strengthened for the promoted electron transfer and oxidant activation. Rendered by the strong surface affinity and molecular activation, defective oxygen vacancies thermodynamically and dynamically promote reactive chain reactions for free radical formation, including the selective O2 reduction to ·O2- and the H2O2 activation to ·OH. Our findings take new insights into environmental geochemistry, and provide an effective strategy to in-situ boost the humic substances-mediated water purification without secondary pollution. ENVIRONMENTAL IMPLICATION: Humic substances are widely distributed in aquatic environment, thus playing important roles in environmental geochemistry. For example, humic substances can achieve good surface adsorption through electrostatic adsorption, ligand exchange and electronic interactions with typical TiO2 to form reactive ligand-metal charge transfer complexes for pollutant degradation. Inspired by the unique properties of surface and sub-surface oxygen vacancies, the defective TiO2 was designed to refine the humic substances-mediated photochemical reactions. A superior reactivity was measured for pollutant degradation. Our findings provide an effective strategy to boost naturally photochemical decontamination in environmentally relevant matrices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...