Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Research (Wash D C) ; 7: 0451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39193132

RESUMO

The potential of circular RNAs (circRNAs) as biomarkers and therapeutic targets is becoming increasingly evident, yet their roles in cardiac regeneration and myocardial renewal remain largely unexplored. Here, we investigated the function of circIGF1R and related mechanisms in cardiac regeneration. Through analysis of circRNA sequencing data from neonatal and adult cardiomyocytes, circRNAs associated with regeneration were identified. Our data showed that circIGF1R expression was high in neonatal hearts, decreased with postnatal maturation, and up-regulated after cardiac injury. The elevation was validated in patients diagnosed with acute myocardial infarction (MI) within 1 week. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and myocardial tissue from mice after apical resection and MI, we observed that circIGF1R overexpression enhanced cardiomyocyte proliferation, reduced apoptosis, and mitigated cardiac dysfunction and fibrosis, while circIGF1R knockdown impeded endogenous cardiac renewal. Mechanistically, we identified circIGF1R binding proteins through circRNA precipitation followed by mass spectrometry. RNA pull-down Western blot and RNA immunoprecipitation demonstrated that circIGF1R directly interacted with DDX5 and augmented its protein level by suppressing ubiquitin-dependent degradation. This subsequently triggered the ß-catenin signaling pathway, leading to the transcriptional activation of cyclin D1 and c-Myc. The roles of circIGF1R and DDX5 in cardiac regeneration were further substantiated through site-directed mutagenesis and rescue experiments. In conclusion, our study highlights the pivotal role of circIGF1R in facilitating heart regeneration and repair after ischemic insults. The circIGF1R/DDX5/ß-catenin axis emerges as a novel therapeutic target for enhancing myocardial repair after MI, offering promising avenues for the development of regenerative therapies.

2.
Commun Biol ; 7(1): 795, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951640

RESUMO

The peroxisome is a versatile organelle that performs diverse metabolic functions. PEX3, a critical regulator of the peroxisome, participates in various biological processes associated with the peroxisome. Whether PEX3 is involved in peroxisome-related redox homeostasis and myocardial regenerative repair remains elusive. We investigate that cardiomyocyte-specific PEX3 knockout (Pex3-KO) results in an imbalance of redox homeostasis and disrupts the endogenous proliferation/development at different times and spatial locations. Using Pex3-KO mice and myocardium-targeted intervention approaches, the effects of PEX3 on myocardial regenerative repair during both physiological and pathological stages are explored. Mechanistically, lipid metabolomics reveals that PEX3 promotes myocardial regenerative repair by affecting plasmalogen metabolism. Further, we find that PEX3-regulated plasmalogen activates the AKT/GSK3ß signaling pathway via the plasma membrane localization of ITGB3. Our study indicates that PEX3 may represent a novel therapeutic target for myocardial regenerative repair following injury.


Assuntos
Membrana Celular , Integrina beta3 , Camundongos Knockout , Regeneração , Animais , Masculino , Camundongos , Membrana Celular/metabolismo , Proliferação de Células , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Traumatismos Cardíacos/genética , Integrina beta3/metabolismo , Integrina beta3/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Plasmalogênios/metabolismo , Transdução de Sinais
3.
J Am Heart Assoc ; 13(13): e034805, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38934866

RESUMO

BACKGROUND: The regenerative capacity of the adult mammalian hearts is limited. Numerous studies have explored mechanisms of adult cardiomyocyte cell-cycle withdrawal. This translational study evaluated the effects and underlying mechanism of rhCHK1 (recombinant human checkpoint kinase 1) on the survival and proliferation of cardiomyocyte and myocardial repair after ischemia/reperfusion injury in swine. METHODS AND RESULTS: Intramyocardial injection of rhCHK1 protein (1 mg/kg) encapsulated in hydrogel stimulated cardiomyocyte proliferation and reduced cardiac inflammation response at 3 days after ischemia/reperfusion injury, improved cardiac function and attenuated ventricular remodeling, and reduced the infarct area at 28 days after ischemia/reperfusion injury. Mechanistically, multiomics sequencing analysis demonstrated enrichment of glycolysis and mTOR (mammalian target of rapamycin) pathways after rhCHK1 treatment. Co-Immunoprecipitation (Co-IP) experiments and protein docking prediction showed that CHK1 (checkpoint kinase 1) directly bound to and activated the Serine 37 (S37) and Tyrosine 105 (Y105) sites of PKM2 (pyruvate kinase isoform M2) to promote metabolic reprogramming. We further constructed plasmids that knocked out different CHK1 and PKM2 amino acid domains and transfected them into Human Embryonic Kidney 293T (HEK293T) cells for CO-IP experiments. Results showed that the 1-265 domain of CHK1 directly binds to the 157-400 amino acids of PKM2. Furthermore, hiPSC-CM (human iPS cell-derived cardiomyocyte) in vitro and in vivo experiments both demonstrated that CHK1 stimulated cardiomyocytes renewal and cardiac repair by activating PKM2 C-domain-mediated cardiac metabolic reprogramming. CONCLUSIONS: This study demonstrates that the 1-265 amino acid domain of CHK1 binds to the 157-400 domain of PKM2 and activates PKM2-mediated metabolic reprogramming to promote cardiomyocyte proliferation and myocardial repair after ischemia/reperfusion injury in adult pigs.


Assuntos
Proliferação de Células , Quinase 1 do Ponto de Checagem , Modelos Animais de Doenças , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/genética , Humanos , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Células HEK293 , Suínos , Reprogramação Celular , Proteínas de Ligação a Hormônio da Tireoide , Regeneração , Ligação Proteica , Sus scrofa , Remodelação Ventricular/fisiologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Metabolismo Energético/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Reprogramação Metabólica
4.
J Cardiovasc Transl Res ; 17(5): 1097-1105, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38647881

RESUMO

Heart failure and myocardial infarction, global health concerns, stem from limited cardiac regeneration post-injury. Myocardial infarction, typically caused by coronary artery blockage, leads to cardiac muscle cell damage, progressing to heart failure. Addressing the adult heart's minimal self-repair capability is crucial, highlighting cardiac regeneration research's importance. Studies reveal a metabolic shift from anaerobic glycolysis to oxidative phosphorylation in neonates as a key factor in impaired cardiac regeneration, with mitochondria being central. The heart's high energy demands rely on a robust mitochondrial network, essential for cellular energy, cardiac health, and regenerative capacity. Mitochondria's influence extends to redox balance regulation, signaling molecule interactions, and apoptosis. Changes in mitochondrial morphology and quantity also impact cardiac cell regeneration. This article reviews mitochondria's multifaceted role in cardiac regeneration, particularly in myocardial infarction and heart failure models. Understanding mitochondrial function in cardiac regeneration aims to enhance myocardial infarction and heart failure treatment methods and insights.


Assuntos
Metabolismo Energético , Insuficiência Cardíaca , Mitocôndrias Cardíacas , Infarto do Miocárdio , Miócitos Cardíacos , Regeneração , Transdução de Sinais , Humanos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Animais , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/patologia , Recuperação de Função Fisiológica , Proliferação de Células
5.
Arch Toxicol ; 97(12): 3209-3226, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37798514

RESUMO

Administration of CHK1-targeted anticancer therapies is associated with an increased cumulative risk of cardiac complications, which is further amplified when combined with gemcitabine. However, the underlying mechanisms remain elusive. In this study, we generated hiPSC-CMs and murine models to elucidate the mechanisms underlying CHK1 inhibition combined with gemcitabine-induced cardiotoxicity and identify potential targets for cardioprotection. Mice were intraperitoneally injected with 25 mg/kg CHK1 inhibitor AZD7762 and 20 mg/kg gemcitabine for 3 weeks. hiPSC-CMs and NMCMs were incubated with 0.5 uM AZD7762 and 0.1 uM gemcitabine for 24 h. Both pharmacological inhibition or genetic deletion of CHK1 and administration of gemcitabine induced mtROS overproduction and pyroptosis in cardiomyocytes by disrupting mitochondrial respiration, ultimately causing heart atrophy and cardiac dysfunction in mice. These toxic effects were further exacerbated with combination administration. Using mitochondria-targeting sequence-directed vectors to overexpress CHK1 in cardiomyocyte (CM) mitochondria, we identified the localization of CHK1 in CM mitochondria and its crucial role in maintaining mitochondrial redox homeostasis for the first time. Mitochondrial CHK1 function loss mediated the cardiotoxicity induced by AZD7762 and CHK1-knockout. Mechanistically, mitochondrial CHK1 directly phosphorylates SIRT3 and promotes its expression within mitochondria. On the contrary, both AZD7762 or CHK1-knockout and gemcitabine decreased mitochondrial SIRT3 abundance, thus resulting in respiration dysfunction. Further hiPSC-CMs and mice experiments demonstrated that SIRT3 overexpression maintained mitochondrial function while alleviating CM pyroptosis, and thereby improving mice cardiac function. In summary, our results suggest that targeting SIRT3 could represent a novel therapeutic approach for clinical prevention and treatment of cardiotoxicity induced by CHK1 inhibition and gemcitabine.


Assuntos
Quinase 1 do Ponto de Checagem , Células-Tronco Pluripotentes Induzidas , Sirtuína 3 , Animais , Camundongos , Cardiotoxicidade/metabolismo , Gencitabina , Homeostase , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos , Oxirredução , Sirtuína 3/genética , Quinase 1 do Ponto de Checagem/metabolismo
6.
Cardiol J ; 30(4): 576-586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34490603

RESUMO

BACKGROUND: High D-dimer (DD) is associated with short-term adverse outcomes in patients with acute coronary syndrome (ACS). In ACS patients who underwent percutaneous coronary intervention (PCI), however, the value of DD (or combined with neutrophil to lymphocyte ratio [NLR]) to predict long-term major adverse cardiovascular events (MACEs) has not been fully evaluated. METHODS: Patients diagnosed with ACS and receiving PCI were included. The primary outcome was MACEs. Cox proportional hazards regression and logistic regression were used to illustrate the relationship between clinical risk factors, biomarkers and MACEs. Survival models were developed based on significant factors and evaluated by the Concordance-index (C-index). RESULTS: The final study cohort was comprised of 650 patients (median age, 64 years; 474 males), including 98 (15%) with MACEs during a median follow-up period of 40 months. According to the cut-off value of DD and NLR, the patients were separated into four groups: high DD or nonhigh DD with high or nonhigh NLR. After adjusting for confounding variables, DD (adjusted hazard ratio [aHR]: 2.39, 95% confidence interval [CI]: 1.52-3.76) and NLR (aHR: 2.71, 95% CI: 1.78-4.11) were independently associated with long-term MACEs. Moreover, patients with both high DD and NLR had a significantly higher risk in MACEs when considering patients with nonhigh DD and NLR as reference (aHR: 6.19, 95% CI: 3.30-11.61). The area under curve increased and reached 0.70 in differentiating long-term MACEs when DD and NLR were combined, and survival models incorporating the two exhibited a stronger predictive power (C-index: 0.75). CONCLUSIONS: D-dimer (or combined with NLR) can be used to predict long-term MACEs in ACS patients undergoing PCI.


Assuntos
Síndrome Coronariana Aguda , Intervenção Coronária Percutânea , Masculino , Humanos , Pessoa de Meia-Idade , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/cirurgia , Intervenção Coronária Percutânea/efeitos adversos , Neutrófilos , Linfócitos , Fatores de Risco
7.
J Mol Cell Cardiol ; 166: 91-106, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35235835

RESUMO

Adult mammals have limited potential for cardiac regeneration after injury. In contrast, neonatal mouse heart, up to 7 days post birth, can completely regenerate after injury. Therefore, identifying the key factors promoting the proliferation of endogenous cardiomyocytes (CMs) is a critical step in the development of cardiac regeneration therapies. In our previous study, we predicted that mitogen-activated protein kinase (MAPK) interacting serine/threonine-protein kinase 2 (MNK2) has the potential of promoting regeneration by using phosphoproteomics and iGPS algorithm. Here, we aimed to clarify the role of MNK2 in cardiac regeneration and explore the underlying mechanism. In vitro, MNK2 overexpression promoted, and MNK2 knockdown suppressed cardiomyocyte proliferation. In vivo, inhibition of MNK2 in CMs impaired myocardial regeneration in neonatal mice. In adult myocardial infarcted mice, MNK2 overexpression in CMs in the infarct border zone activated cardiomyocyte proliferation and improved cardiac repair. In CMs, MNK2 binded to eIF4E and regulated its phosphorylation level. Knockdown of eukaryotic translation initiation factor (eIF4E) impaired the proliferation-promoting effect of MNK2 in CMs. MNK2-eIF4E axis stimulated CMs proliferation by activating cyclin D1. Our study demonstrated that MNK2 kinase played a critical role in cardiac regeneration. Over-expression of MNK2 promoted cardiomyocyte proliferation in vitro and in vivo, at least partly, by activating the eIF4E-cyclin D1 axis. This investigation identified a novel target for heart regenerative therapy.


Assuntos
Fator de Iniciação 4E em Eucariotos , Infarto do Miocárdio , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Ciclina D1/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Mamíferos/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação
8.
J Am Heart Assoc ; 10(22): e022802, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34726469

RESUMO

Background The neonatal heart maintains its entire regeneration capacity within days after birth. Using quantitative phosphoproteomics technology, we identified that SGK3 (serine/threonine-protein kinase 3) in the neonatal heart is highly expressed and activated after myocardial infarction. This study aimed to uncover the function and related mechanisms of SGK3 on cardiomyocyte proliferation and cardiac repair after apical resection or ischemia/reperfusion injury. Methods and Results The effect of SGK3 on proliferation and oxygen glucose deprivation/reoxygenation- induced apoptosis in isolated cardiomyocytes was evaluated using cardiomyocyte-specific SGK3 overexpression or knockdown adenovirus5 vector. In vivo, gain- and loss-of-function experiments using cardiomyocyte-specific adeno-associated virus 9 were performed to determine the effect of SGK3 in cardiomyocyte proliferation and cardiac repair after apical resection or ischemia/reperfusion injury. In vitro, overexpression of SGK3 enhanced, whereas knockdown of SGK3 decreased, the cardiomyocyte proliferation ratio. In vivo, inhibiting the expression of SGK3 shortened the time window of cardiac regeneration after apical resection in neonatal mice, and overexpression of SGK3 significantly promoted myocardial repair and cardiac function recovery after ischemia/reperfusion injury in adult mice. Mechanistically, SGK3 promoted cardiomyocyte regeneration and myocardial repair after cardiac injury by inhibiting GSK-3ß (glycogen synthase kinase-3ß) activity and upregulating ß-catenin expression. SGK3 also upregulated the expression of cell cycle promoting genes G1/S-specific cyclin-D1, c-myc (cellular-myelocytomatosis viral oncogene), and cdc20 (cell division cycle 20), but downregulated the expression of cell cycle negative regulators cyclin kinase inhibitor P 21 and cyclin kinase inhibitor P 27. Conclusions Our study reveals a key role of SGK3 on cardiac repair after apical resection or ischemia/reperfusion injury, which may reopen a novel therapeutic option for myocardial infarction.


Assuntos
Glicogênio Sintase Quinase 3 beta/genética , Infarto do Miocárdio , Traumatismo por Reperfusão , Animais , Apoptose , Camundongos , Infarto do Miocárdio/genética , Miócitos Cardíacos , Proteínas Serina-Treonina Quinases/genética , Serina/química , Treonina/química , beta Catenina/genética
9.
Chin Med J (Engl) ; (6): 716-723, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32049749

RESUMO

The regeneration capacity of cardiomyocytes (CMs) is retained in neonatal mouse hearts but is limited in adult mouse hearts. Myocardial infarction (MI) in adult hearts usually leads to the loss of large amounts of cardiac tissue, and then accelerates the process of cardiac remodeling and heart failure. Therefore, it is necessary to explore the potential mechanisms of CM regeneration in the neonates and develop potential therapies aimed at promoting CM regeneration and cardiac repair in adults. Currently, studies indicate that a number of mechanisms are involved in neonatal endogenous myocardial regeneration, including cell cycle regulators, transcription factors, non-coding RNA, signaling pathways, acute inflammation, hypoxia, protein kinases, and others. Understanding the mechanisms of regeneration in neonatal CMs after MI provides theoretical support for the studies related to the promotion of heart repair after MI in adult mammals. However, several difficulties in the study of CM regeneration still need to be overcome. This article reviews the potential mechanisms of endogenous CM regeneration in neonatal mouse hearts and discusses possible therapeutic targets and future research directions.


Assuntos
Infarto do Miocárdio/patologia , Miocárdio/patologia , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Humanos , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...