Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 941: 173665, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823720

RESUMO

Recent hot droughts have caused tree vitality decline and increased mortality in many forest regions on earth. Most of Central Europe's important timber species have suffered from the extreme 2018/2019 hot drought, confronting foresters with difficult questions about the choice of more drought- and heat-resistant tree species. We compared the growth dynamics of European beech, sessile oak, Scots pine and Douglas fir in a warmer and a cooler lowland region of Germany to explore the adaptive potential of the four species to climate warming (24 forest stands). The basal area increment (BAI) of the two conifers has declined since about 1990-2010 in both regions, and that of beech in the warmer region, while oak showed positive BAI trends. A 2 °C difference in mean temperatures and a higher frequency of hot days (temperature maximum >30 °C) resulted in greater sensitivity to a negative climatic water balance in beech and oak, and elevated sensitivity to summer heat in Douglas fir and pine. This suggests to include hot days in climate-growth analyses. Negative pointer years were closely related to dry years. Nevertheless, all species showed growth recovery within one to three years. We conclude that all four species are sensitive to a deteriorating climatic water balance and hot temperatures, and have so far not been able to successfully acclimate to the warmer climate, with especially Douglas and beech, but also Scots pine, being vulnerable to a warming and drying climate.


Assuntos
Mudança Climática , Florestas , Árvores , Árvores/crescimento & desenvolvimento , Alemanha , Secas , Fagus/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Europa (Continente)
2.
Physiol Plant ; 176(3): e14334, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705836

RESUMO

European beech is negatively affected by climate change and a further growth decline is predicted for large parts of its distribution range. Despite the importance of this species, little is known about its genetic adaptation and especially the genetic basis of its physiological traits. Here, we used genotyping by sequencing to identify SNPs in 43 German European beech populations growing under different environmental conditions. In total, 28 of these populations were located along a precipitation and temperature gradient in northern Germany, and single tree-based hydraulic and morphological traits were available. We obtained a set of 13,493 high-quality SNPs that were used for environmental and SNP-trait association analysis. In total, 22 SNPs were identified that were significantly associated with environmental variables or specific leaf area (SLA). Several SNPs were located in genes related to stress response. The majority of the significant SNPs were located in non-coding (intergenic and intronic) regions. These may be in linkage disequilibrium with the causative coding or regulatory regions. Our study gives insights into the genetic basis of abiotic adaptation in European beech, and provides genetic resources that can be used in future studies on this species. Besides clear patterns of local adaptation to environmental conditions of the investigated populations, the analyzed morphological and hydraulic traits explained most of the explainable genetic variation. Thus, they could successfully be altered in tree breeding programs, which may help to increase the adaptation of European beech to changing environmental conditions in the future.


Assuntos
Fagus , Estudo de Associação Genômica Ampla , Folhas de Planta , Polimorfismo de Nucleotídeo Único , Fagus/genética , Fagus/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Folhas de Planta/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Desequilíbrio de Ligação/genética , Meio Ambiente , Fenótipo , Genótipo , Alemanha
3.
New Phytol ; 240(6): 2276-2287, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897071

RESUMO

Climate warming advances the onset of tree growth in spring, but above- and belowground phenology are not always synchronized. These differences in growth responses may result from differences in root and bud dormancy dynamics, but root dormancy is largely unexplored. We measured dormancy in roots and leaf buds of Fagus sylvatica and Populus nigra by quantifying the warming sum required to initiate above- and belowground growth in October, January and February. We furthermore carried out seven experiments, manipulating only the soil and not air temperature before or during tree leaf-out to evaluate the potential of warmer roots to influence budburst timing using seedlings and adult trees of F. sylvatica and seedlings of Betula pendula. Root dormancy was virtually absent in comparison with the much deeper winter bud dormancy. Roots were able to start growing immediately as soils were warmed during the winter. Interestingly, higher soil temperature advanced budburst across all experiments, with soil temperature possibly accounting for c. 44% of the effect of air temperature in advancing aboveground spring phenology per growing degree hour. Therefore, differences in root and bud dormancy dynamics, together with their interaction, likely explain the nonsynchronized above- and belowground plant growth responses to climate warming.


Assuntos
Betula , Árvores , Estações do Ano , Temperatura , Solo , Folhas de Planta
4.
Sensors (Basel) ; 23(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299963

RESUMO

We introduce a novel ultra-low power system for tracking animal movements over long periods with an unprecedented high-temporal-resolution. The localization principle is based on the detection of cellular base stations using a miniaturized software-defined radio, weighing 2.0 g, including the battery, and having a size equivalent to two stacked 1-euro cent coins. Therefore, the system is small and lightweight enough to be deployed on small, wide-ranging, or migrating animals, such as European bats, for movement analysis with an unprecedented spatiotemporal resolution. The position estimation relies on a post-processing probabilistic RF pattern-matching method based on the acquired base stations and power levels. In several field tests, the system has been successfully verified, and a run-time of close to one year has been demonstrated.


Assuntos
Animais Selvagens , Telemetria , Animais , Telemetria/métodos , Software , Fontes de Energia Elétrica
5.
Glob Chang Biol ; 29(11): 2886-2892, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37128754

RESUMO

Microclimate research gained renewed interest over the last decade and its importance for many ecological processes is increasingly being recognized. Consequently, the call for high-resolution microclimatic temperature grids across broad spatial extents is becoming more pressing to improve ecological models. Here, we provide a new set of open-access bioclimatic variables for microclimate temperatures of European forests at 25 × 25 m2 resolution.


Assuntos
Microclima , Árvores , Temperatura , Florestas , Ecossistema
6.
Environ Microbiol ; 25(6): 1118-1135, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36752534

RESUMO

In temperate regions, climate warming alters temperature and precipitation regimes. During winter, a decline in insulating snow cover changes the soil environment, where especially frost exposure can have severe implications for soil microorganisms and subsequently for soil nutrient dynamics. Here, we investigated winter climate change responses in European beech forests soil microbiome. Nine study sites with each three treatments (snow exclusion, insolation, and ambient) were investigated. Long-term adaptation to average climate was explored by comparing across sites. Triplicated treatment plots were used to evaluate short-term (one single winter) responses. Community profiles of bacteria, archaea and fungi were created using amplicon sequencing. Correlations between the microbiome, vegetation and soil physicochemical properties were found. We identify core members of the forest-microbiome and link them to key processes, for example, mycorrhizal symbiont and specialized beech wood degraders (fungi) and nitrogen cycling (bacteria, archaea). For bacteria, the shift of the microbiome composition due to short-term soil temperature manipulations in winter was similar to the community differences observed between long-term relatively cold to warm conditions. The results suggest a strong link between the changes in the microbiomes and changes in environmental processes, for example, nitrogen dynamics, driven by variations in winter climate.


Assuntos
Fagus , Micorrizas , Ecossistema , Archaea/genética , Solo/química , Florestas , Bactérias/genética , Mudança Climática , Estações do Ano , Neve , Nitrogênio
7.
Glob Chang Biol ; 29(3): 763-779, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36426513

RESUMO

Increasing exposure to climate warming-related drought and heat threatens forest vitality in many regions on earth, with the trees' vulnerability likely depending on local climatic aridity, recent climate trends, edaphic conditions, and the drought acclimatization and adaptation of populations. Studies exploring tree species' vulnerability to climate change often have a local focus or model the species' entire distribution range, which hampers the separation of climatic and edaphic drivers of drought and heat vulnerability. We compared recent radial growth trends and the sensitivity of growth to drought and heat in central populations of a widespread and naturally dominant tree species in Europe, European beech (Fagus sylvatica), at 30 forest sites across a steep precipitation gradient (500-850 mm year-1 ) of short length to assess the species' adaptive potential. Size-standardized basal area increment remained more constant during the period of accelerated warming since the early 1980s in populations with >360 mm growing season precipitation (April-September), while growth trends were negative at sites with <360 mm. Climatic drought in June appeared as the most influential climatic factor affecting radial growth, with a stronger effect at drier sites. A decadal decrease in the climatic water balance of the summer was identified as the most important factor leading to growth decline, which is amplified by higher stem densities. Inter-annual growth variability has increased since the early 1980s, and variability is generally higher at drier and sandier sites. Similarly, within-population growth synchrony is higher at sandier sites and has increased with a decrease in the June climatic water balance. Our results caution against predicting the drought vulnerability of trees solely from climate projections, as soil properties emerged as an important modulating factor. We conclude that beech is facing recent growth decline at drier sites in the centre of its distribution range, driven by climate change-related climate aridification.


Assuntos
Fagus , Solo , Solo/química , Secas , Estações do Ano , Florestas , Árvores , Alemanha , Água , Mudança Climática
8.
Nat Commun ; 13(1): 2015, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440102

RESUMO

The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.


Assuntos
Fagus , Movimentos do Ar , Carbono , Mudança Climática , Florestas
9.
Commun Biol ; 5(1): 163, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273334

RESUMO

The growth of past, present, and future forests was, is and will be affected by climate variability. This multifaceted relationship has been assessed in several regional studies, but spatially resolved, large-scale analyses are largely missing so far. Here we estimate recent changes in growth of 5800 beech trees (Fagus sylvatica L.) from 324 sites, representing the full geographic and climatic range of species. Future growth trends were predicted considering state-of-the-art climate scenarios. The validated models indicate growth declines across large region of the distribution in recent decades, and project severe future growth declines ranging from -20% to more than -50% by 2090, depending on the region and climate change scenario (i.e. CMIP6 SSP1-2.6 and SSP5-8.5). Forecasted forest productivity losses are most striking towards the southern distribution limit of Fagus sylvatica, in regions where persisting atmospheric high-pressure systems are expected to increase drought severity. The projected 21st century growth changes across Europe indicate serious ecological and economic consequences that require immediate forest adaptation.


Assuntos
Fagus , Mudança Climática , Secas , Florestas , Árvores
10.
Glob Chang Biol ; 27(23): 6307-6319, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34605132

RESUMO

Ecological research heavily relies on coarse-gridded climate data based on standardized temperature measurements recorded at 2 m height in open landscapes. However, many organisms experience environmental conditions that differ substantially from those captured by these macroclimatic (i.e. free air) temperature grids. In forests, the tree canopy functions as a thermal insulator and buffers sub-canopy microclimatic conditions, thereby affecting biological and ecological processes. To improve the assessment of climatic conditions and climate-change-related impacts on forest-floor biodiversity and functioning, high-resolution temperature grids reflecting forest microclimates are thus urgently needed. Combining more than 1200 time series of in situ near-surface forest temperature with topographical, biological and macroclimatic variables in a machine learning model, we predicted the mean monthly offset between sub-canopy temperature at 15 cm above the surface and free-air temperature over the period 2000-2020 at a spatial resolution of 25 m across Europe. This offset was used to evaluate the difference between microclimate and macroclimate across space and seasons and finally enabled us to calculate mean annual and monthly temperatures for European forest understories. We found that sub-canopy air temperatures differ substantially from free-air temperatures, being on average 2.1°C (standard deviation ± 1.6°C) lower in summer and 2.0°C higher (±0.7°C) in winter across Europe. Additionally, our high-resolution maps expose considerable microclimatic variation within landscapes, not captured by the gridded macroclimatic products. The provided forest sub-canopy temperature maps will enable future research to model below-canopy biological processes and patterns, as well as species distributions more accurately.


Assuntos
Florestas , Microclima , Mudança Climática , Temperatura , Árvores
11.
Sensors (Basel) ; 21(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805353

RESUMO

Due to higher automation and predictive maintenance, it becomes more and more important to acquire as many data as possible during industrial processes. However, many scenarios require remote sensing since either moving parts would result in wear and tear of cables or harsh environments prevent a wired connection. In the last few years, resonant surface acoustic wave (SAW) sensors have promised the possibility to be interrogable wirelessly which showed very good results in first studies. Therefore, the sensor's resonance frequency shifts due to a changed measurand and thus has to be determined. However, up to now frequency reader systems showed several drawbacks like high costs or insufficient accuracy that blocked the way for a widespread usage of this approach in the mass market. Hence, this article presents a miniaturized and low cost six-port based frequency reader for SAW resonators in the 2.45 GHz ISM band that does not require an external calculation unit. It is shown that it can be either used to evaluate the scenario or measure the frequency directly with an amplitude or phase measurement, respectively. The performance of the system, including the hardware and embedded software, is finally shown by wired and contactless torque measurements.

12.
Sci Rep ; 11(1): 3025, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542260

RESUMO

Contactless measurement of heart rate variability (HRV), which reflects changes of the autonomic nervous system (ANS) and provides crucial information on the health status of a person, would provide great benefits for both patients and doctors during prevention and aftercare. However, gold standard devices to record the HRV, such as the electrocardiograph, have the common disadvantage that they need permanent skin contact with the patient. Being connected to a monitoring device by cable reduces the mobility, comfort, and compliance by patients. Here, we present a contactless approach using a 24 GHz Six-Port-based radar system and an LSTM network for radar heart sound segmentation. The best scores are obtained using a two-layer bidirectional LSTM architecture. To verify the performance of the proposed system not only in a static measurement scenario but also during a dynamic change of HRV parameters, a stimulation of the ANS through a cold pressor test is integrated in the study design. A total of 638 minutes of data is gathered from 25 test subjects and is analysed extensively. High F-scores of over 95% are achieved for heartbeat detection. HRV indices such as HF norm are extracted with relative errors around 5%. Our proposed approach is capable to perform contactless and convenient HRV monitoring and is therefore suitable for long-term recordings in clinical environments and home-care scenarios.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Frequência Cardíaca/fisiologia , Ruídos Cardíacos/fisiologia , Monitorização Fisiológica/métodos , Adulto , Sistema Nervoso Autônomo/diagnóstico por imagem , Eletrocardiografia/instrumentação , Feminino , Humanos , Interferometria/instrumentação , Masculino , Monitorização Fisiológica/instrumentação , Radar/instrumentação
13.
Heredity (Edinb) ; 126(1): 23-37, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32632284

RESUMO

Assessing the genetic adaptive potential of populations and species is essential for better understanding evolutionary processes. However, the expression of genetic variation may depend on environmental conditions, which may speed up or slow down evolutionary responses. Thus, the same selection pressure may lead to different responses. Against this background, we here investigate the effects of thermal stress on genetic variation, mainly under controlled laboratory conditions. We estimated additive genetic variance (VA), narrow-sense heritability (h2) and the coefficient of genetic variation (CVA) under both benign control and stressful thermal conditions. We included six species spanning a diverse range of plant and animal taxa, and a total of 25 morphological and life-history traits. Our results show that (1) thermal stress reduced fitness components, (2) the majority of traits showed significant genetic variation and that (3) thermal stress affected the expression of genetic variation (VA, h2 or CVA) in only one-third of the cases (25 of 75 analyses, mostly in one clonal species). Moreover, the effects were highly species-specific, with genetic variation increasing in 11 and decreasing in 14 cases under stress. Our results hence indicate that thermal stress does not generally affect the expression of genetic variation under laboratory conditions but, nevertheless, increases or decreases genetic variation in specific cases. Consequently, predicting the rate of genetic adaptation might not be generally complicated by environmental variation, but requires a careful case-by-case consideration.


Assuntos
Evolução Molecular , Variação Genética , Plantas/genética , Animais
14.
Sensors (Basel) ; 20(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076283

RESUMO

In hospitals, continuous monitoring of vital parameters can provide valuable information about the course of a patient's illness and allows early warning of emergencies. To enable such monitoring without restricting the patient's freedom of movement and comfort, a radar system is attached under the mattress which consists of four individual radar modules to cover the entire width of the bed. Using radar, heartbeat and respiration can be measured without contact and through clothing. By processing the raw radar data, the presence of a patient can be determined and movements are categorized into the classes "bed exit", "bed entry", and "on bed movement". Using this information, the vital parameters can be assessed in sections where the patient lies calmly in bed. In the first step, the presence and movement classification is demonstrated using recorded training and test data. Next, the radar was modified to perform vital sign measurements synchronized to a gold standard device. The evaluation of the individual radar modules shows that, regardless of the lying position of the test person, at least one of the radar modules delivers accurate results for continuous monitoring.


Assuntos
Monitorização Fisiológica , Radar , Processamento de Sinais Assistido por Computador , Algoritmos , Feminino , Frequência Cardíaca , Humanos , Masculino , Monitorização Ambulatorial , Sinais Vitais
15.
Sci Data ; 7(1): 291, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901032

RESUMO

Using Radar it is possible to measure vital signs through clothing or a mattress from the distance. This allows for a very comfortable way of continuous monitoring in hospitals or home environments. The dataset presented in this article consists of 24 h of synchronised data from a radar and a reference device. The implemented continuous wave radar system is based on the Six-Port technology and operates at 24 GHz in the ISM band. The reference device simultaneously measures electrocardiogram, impedance cardiogram and non-invasive continuous blood pressure. 30 healthy subjects were measured by physicians according to a predefined protocol. The radar was focused on the chest while the subjects were lying on a tilt table wired to the reference monitoring device. In this manner five scenarios were conducted, the majority of them aimed to trigger hemodynamics and the autonomic nervous system of the subjects. Using the database, algorithms for respiratory or cardiovascular analysis can be developed and a better understanding of the characteristics of the radar-recorded vital signs can be gained.


Assuntos
Monitorização Ambulatorial/instrumentação , Radar , Sinais Vitais , Algoritmos , Sistema Nervoso Autônomo , Voluntários Saudáveis , Hemodinâmica , Humanos
16.
IEEE Trans Ultrason Ferroelectr Freq Control ; 67(11): 2423-2432, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32746175

RESUMO

In this article, an electrothermal modeling approach of surface acoustic wave (SAW) resonators and filters is presented. The starting point for the model is a preliminary design that has to be assessed for thermal aspects. Due to the high geometrical complexity of SAW components, simplifications are elaborated and qualified on resonator and filter levels to prepare the design for thermal simulation. A thermal model is created and simulated in a finite-element method environment. The simulated behavior is exported as a thermal impedance and implemented in a circuit model of a SAW filter. The layout's electromagnetic behavior is taken into account. Electrothermal models of the SAW resonators and the bus bars are developed. The interface to the thermal impedance is achieved by the use of electrothermal ports. The dynamic effect of the frequency shift is included. Verification is done by a comparison of the temperature increase of a resonator in a filter test structure to a corresponding simulation model. The filter is excited by a radio frequency large signal, and the temperature is detected by the use of a resistive temperature sensor. A simulation that shows the impact of mutual heating between the resonators in a filter environment is performed.

17.
PLoS Biol ; 18(4): e3000655, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32240158

RESUMO

Recent advances in animal tracking technology have ushered in a new era in biologging. However, the considerable size of many sophisticated biologging devices restricts their application to larger animals, whereas older techniques often still represent the state-of-the-art for studying small vertebrates. In industrial applications, low-power wireless sensor networks (WSNs) fulfill requirements similar to those needed to monitor animal behavior at high resolution and at low tag mass. We developed a wireless biologging network (WBN), which enables simultaneous direct proximity sensing, high-resolution tracking, and long-range remote data download at tag masses of 1 to 2 g. Deployments to study wild bats created social networks and flight trajectories of unprecedented quality. Our developments highlight the vast capabilities of WBNs and their potential to close an important gap in biologging: fully automated tracking and proximity sensing of small animals, even in closed habitats, at high spatial and temporal resolution.


Assuntos
Quirópteros , Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto/métodos , Tecnologia sem Fio , Animais , Comportamento Animal , Quirópteros/fisiologia , Ecossistema , Fontes de Energia Elétrica , Monitoramento Ambiental/instrumentação , Feminino , Alemanha , Masculino , Panamá , Comportamento Social , Análise Espaço-Temporal , Clima Tropical , Vertebrados
18.
Sci Data ; 7(1): 50, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054854

RESUMO

Radar systems allow for contactless measurements of vital signs such as heart sounds, the pulse signal, and respiration. This approach is able to tackle crucial disadvantages of state-of-the-art monitoring devices such as the need for permanent wiring and skin contact. Potential applications include the employment in a hospital environment but also in home care or passenger vehicles. This dataset consists of synchronised data which are acquired using a Six-Port-based radar system operating at 24 GHz, a digital stethoscope, an ECG, and a respiration sensor. 11 test subjects were measured in different defined scenarios and at several measurement positions such as at the carotid, the back, and several frontal positions on the thorax. Overall, around 223 minutes of data were acquired at scenarios such as breath-holding, post-exercise measurements, and while speaking. The presented dataset contains reference-labeled ECG signals and can therefore easily be used to either test algorithms for monitoring the heart rate, but also to gain insights about characteristic effects of radar-based vital sign monitoring.


Assuntos
Ruídos Cardíacos , Radar , Processamento de Sinais Assistido por Computador , Sinais Vitais , Algoritmos , Frequência Cardíaca , Humanos , Respiração
19.
IEEE Trans Biomed Eng ; 67(3): 773-785, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180834

RESUMO

OBJECTIVE: Radar technology promises to be a touchless and thereby burden-free method for continuous heart sound monitoring, which can be used to detect cardiovascular diseases. However, the first and most crucial step is to differentiate between high- and low-quality segments in a recording to assess their suitability for a subsequent automated analysis. This paper gives a comprehensive study on this task and first addresses the specific characteristics of radar-recorded heart sound signals. METHODS: To gather heart sound signals recorded from radar, a bistatic radar system was built and installed at the university hospital. Under medical supervision, heart sound data were recorded from 30 healthy test subjects. The signals were segmented and labeled as high- or low-quality by a medical expert. Different state-of-the-art pattern classification algorithms were evaluated for the task of automated signal quality determination and the most promising one was optimized and evaluated using leave-one-subject-out cross validation. RESULTS: The proposed classifier is able to achieve an accuracy of up to 96.36% and demonstrates a superior classification performance compared with the state-of-the-art classifier with a maximum accuracy of 76.00%. CONCLUSION: This paper introduces an ensemble classifier that is able to perform automated signal quality determination of radar-recorded heart sound signals with a high accuracy. SIGNIFICANCE: Besides achieving a higher performance compared with state-of-the-art classifiers, this study is the first one to deal with the quality determination of heart sounds that are recorded by radar systems. The proposed method enables contactless and continuous heart sound monitoring for the detection of cardiovascular diseases.


Assuntos
Ruídos Cardíacos/fisiologia , Monitorização Fisiológica/métodos , Fonocardiografia/métodos , Radar/instrumentação , Processamento de Sinais Assistido por Computador , Adulto , Algoritmos , Eletrocardiografia , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fonocardiografia/instrumentação , Adulto Jovem
20.
Glob Chang Biol ; 26(4): 2505-2518, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31860143

RESUMO

The role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree-ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). The major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales were identified. Our analysis documents that 20th century Scots pine and deciduous species growth is generally controlled by different climate parameters, and that summer moisture availability is increasingly important for the growth of deciduous species examined. We report changes in the influence of winter climate variables over the last decades, where a decreasing influence of late winter temperature on deciduous tree growth and an increasing influence of winter temperature on Scots pine growth was found. By comparing climate-growth responses for the 1943-1972 and 1973-2002 periods and characterizing site-level growth response stability, a descriptive application of spatial segregation analysis distinguished sites with stable responses to dominant climate parameters (northeast of the study region), and sites that collectively showed unstable responses to winter climate (southeast of the study region). The findings presented here highlight the temporally unstable and nonuniform responses of tree growth to climate variability, and that there are geographical coherent regions where these changes are similar. Considering continued climate change in the future, our results provide important regional perspectives on recent broad-scale climate-growth relationships for trees across the temperate to boreal forest transition around the south Baltic Sea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...