Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202409204, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010735

RESUMO

Two-dimensional (2D) nonlayered metal compounds with porous structure show broad application prospects in electrochemistry-related fields due to their abundant active sites, open ions/electrons diffusion channels, and faradaic reactions. However, scalable and universal synthesis of 2D porous compounds still remains challenging. Here, inspired by blowing gum, a metal-organic gel (MOG) rapid redox transformation (MRRT) strategy is proposed for the mass production of a wide variety of 2D porous metal oxides. Adequate crosslinking degree of MOG precursor and its rapid redox with NO3- are critical for generating gas pressure from interior to exterior, thus blowing the MOG into 2D carbon nanosheets, which further act as self-sacrifice template for formation of oxides with porous and ultrathin structure. The versatility of this strategy is demonstrated by the fabrication of 39 metal oxides, including 10 transition metal oxides, one II-main group oxide, two III-main group oxides, 22 perovskite oxides, four high-entropy oxides. As an illustrative verification, the 2D transition metal oxides exhibit excellent capacitive deionization (CDI) performance. Moreover, the assembled CDI cell could act as desalting battery to supply electrical energy during electrode regeneration. This MRRT strategy offers opportunities for achieving universal synthesis of 2D porous oxides with nonlayered structures and studying their electrochemistry-related applications.

2.
Phys Chem Chem Phys ; 26(28): 19497-19504, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38979563

RESUMO

The stannic oxide (SnO2) anode expands in volume during cycling causing a decrease in reversible capacity. In this work, we generated a spherical SnO2/Sn heterojunction with core-shell structure composites encapsulated by graphene (SnO2/Sn/G) in situ using a simple one-step hydrothermal and subsequent annealing process. SnO2/Sn heterojunction nanospheres dispersed in a porous graphene framework accelerate the diffusion kinetics of electrons and ions. In addition, the structure plays a key role in mitigating large volume changes and nanostructure agglomeration. As a result, SnO2/Sn/G exhibits excellent performance as an anode material for lithium-ion batteries (LIBs), maintaining a reversible specific capacity of 720.6 mA h g-1 even after 600 cycles at a current density of 0.5 A g-1.

3.
Phys Chem Chem Phys ; 26(24): 17292-17302, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38860378

RESUMO

Silicon (Si) has been widely investigated as an anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity. However, the huge volume expansion and low electrical conductivity limit its practical application to some extent. Here, we prepared silicon/reduced graphene oxide/amorphous carbon (Si/G/C) anode materials for lithium-ion batteries using a facile synergistic cladding layer. The protective effect of different carbon layers was explored and it was found that ternary composites have excellent electrochemical properties. In this work, the surface of Si was first modified using ammonia, and the positively charged Si was tightly anchored to the graphene sheet layer. In contrast, amorphous carbon was used as a reinforcing coating for further coating to synergistically build up the cladding layer of Si NPs with graphene oxide. The ternary composite (Si/G/C) material greatly ensures the structural integrity of the composites and shows excellent cycling as well as rate performance compared to Si/reduced graphene oxide and Si/carbon composites. For the Si/G/C composite, at a current density of 1 A g-1, it can be stably cycled over 267 times with 70% capacity retention (only 0.0711% capacity reduction per cycle).

4.
Molecules ; 29(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792041

RESUMO

Using silicon/reduced graphene oxide (Si/rGO) composites as lithium-ion battery (LIB) anodes can effectively buffer the volumetric expansion and shrinkage of Si. Herein, we designed and prepared Si/rGO-b with a sandwiched structure, formed by a duple combination of ammonia-modified silicon (m-Si) nanoparticles (NP) with graphene oxide (GO). In the first composite process of m-Si and GO, a core-shell structure of primal Si/rGO-b (p-Si/rGO-b) was formed. The amino groups on the m-Si surface can not only hybridize with the GO surface to fix the Si particles, but also form covalent chemical bonds with the remaining carboxyl groups of rGO to enhance the stability of the composite. During the electrochemical reaction, the oxygen on the m-Si surface reacts with lithium ions (Li+) to form Li2O, which is a component of the solid-electrolyte interphase (SEI) and is beneficial to buffering the volume expansion of Si. Then, the p-Si/rGO-b recombines with GO again to finally form a sandwiched structure of Si/rGO-b. Covalent chemical bonds are formed between the rGO layers to tightly fix the p-Si/rGO-b, and the conductive network formed by the reintroduced rGO improves the conductivity of the Si/rGO-b composite. When used as an electrode, the Si/rGO-b composite exhibits excellent cycling performance (operated stably for more than 800 cycles at a high-capacity retention rate of 82.4%) and a superior rate capability (300 mA h/g at 5 A/g). After cycling, tiny cracks formed in some areas of the electrode surface, with an expansion rate of only 27.4%. The duple combination of rGO and the unique sandwiched structure presented here demonstrate great effectiveness in improving the electrochemical performance of alloy-type anodes.

5.
RSC Adv ; 14(17): 11734-11745, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38605898

RESUMO

Transition metal oxides with high theoretical capacitance are regarded as desired electrode materials for supercapacitors, however, the poor conductivity and sluggish charge transfer kinetics constrain their electrochemical performance. The three-dimensional (3D) coral-like ZnCo2O4 nanomaterials with abundant oxygen vacancies were synthesized through a facile hydrothermal method and chemical reduction approach. The introduced oxygen vacancies can provide more active sites and lower the energy barrier, thereby facilitating the kinetics of surface reactions. Furthermore, the abundant oxygen vacancies in metal oxides can function as shallow donors to facilitate charge carrier diffusion, resulting in a faster ion diffusion rate and superior electrochemical conductivity. The electrochemical performance of ZnCo2O4 was optimized by the introduction of oxygen vacancies. The ZnCo2O4 nanoclusters, reduced by 0.5 M NaBH4 (ZnCo2O4-0.5), exhibit a specific capacitance of 2685.7 F g-1 at 1 A g-1, which is nearly twice that of the pristine ZnCo2O4 (1525.7 F g-1 at 1 A g-1). The ZnCo2O4-0.5 exhibits an excellent rate capacity (81.9% capacitance retention at 10 A g-1) and a long cycling stability (72.6% specific capacitance retention after 10 000 cycles at 3 A g-1). Furthermore, the asymmetric supercapacitor (ASC, ZnCo2O4-0.5 nanoclusters//active carbon) delivers a maximum energy density of 50.2 W h kg-1 at the power density of 493.7 W kg-1 and an excellent cycling stability (75.3% capacitance retention after 3000 cycles at 2 A g-1), surpassing the majority of previously reported ZnCo2O4-based supercapacitors. This work is important for revealing the pivotal role of implementing the defect engineering regulation strategy in achieving optimization of both electrochemical activity and conductivity.

6.
RSC Adv ; 14(1): 650-661, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173590

RESUMO

Controllable synthesis of electrode materials with desirable morphology and size is of significant importance and challenging for high-performance supercapacitors. Herein, we propose an efficient hydrothermal approach to controllable synthesis of hierarchical porous three-dimensional (3D) ZnCo2O4 composite films directly on Ni foam substrates. The composite films consisted of two-dimensional (2D) nanosheets array anchored with one-dimensional (1D) nanowires. The morphologies of ZnCo2O4 arrays can be easily controlled by adjusting the concentration of NH4F. The effect of NH4F in the formation of these 3D hierarchical porous ZnCo2O4 nanosheets@nanowires films is systematically investigated based on the NH4F-independent experiments. This unique 3D hierarchical structure can help enlarge the electroactive surface area, accelerate the ion and electron transfer, and accommodate structural strain. The as-prepared hierarchical porous ZnCo2O4 nanosheets@nanowires films exhibited inspiring electrochemical performance with high specific capacitance of 1289.6 and 743.2 F g-1 at the current density of 1 and 30 A g-1, respectively, and a remarkable long cycle stability with 86.8% capacity retention after 10 000 cycles at the current density of 1 A g-1. Furthermore, the assembled asymmetric supercapacitor using the as-prepared ZnCo2O4 nanosheets@nanowires films as the positive electrode and active carbon as negative electrode delivered a high energy density of 39.7 W h kg-1 at a power density of 400 W kg-1. Our results show that these unique hierarchical porous 3D ZnCo2O4 nanosheets@nanowires films are promising candidates as high-performance electrodes for energy storage applications.

7.
Small ; 20(25): e2309724, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38239083

RESUMO

The commercialization of silicon anode for lithium-ion batteries has been hindered by severe structure fracture and continuous interfacial reaction against liquid electrolytes, which can be mitigated by solid-state electrolytes. However, rigid ceramic electrolyte suffers from large electrolyte/electrode interfacial resistance, and polymer electrolyte undergoes poor ionic conductivity, both of which are worsened by volume expansion of silicon. Herein, by dispersing Li1.3Al0.3Ti1.7(PO4)3 (LATP) into poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP) and poly(ethylene oxide) (PEO) matrix, the PVDF-HFP/PEO/LATP (PHP-L) solid-state electrolyte with high ionic conductivity (1.40 × 10-3 S cm-1), high tensile strength and flexibility is designed, achieving brilliant compatibility with silicon nanosheets. The chemical interactions between PVDF-HFP and PEO, LATP increase amorphous degree of polymer, accelerating Li+ transfer. Good flexibility of the PHP-L contributes to adaptive structure variation of electrolyte with silicon expansion/shrinkage, ensuring swift interfacial ions transfer. Moreover, the solid membrane with high tensile limits electrode structural degradation and eliminates continuous interfacial growth to form stable 2D solid electrolyte interface (SEI) film, achieving superior cyclic performance to liquid electrolytes. The Si//PHP-L15//LiFePO4 solid-state full-cell exhibits stable lithium storage with 81% capacity retention after 100 cycles. This work demonstrates the effectiveness of composite solid electrolyte in addressing fundamental interfacial and performance challenges of silicon anodes.

8.
Phys Chem Chem Phys ; 26(4): 3415-3423, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38205513

RESUMO

Currently, it remains a challenge to make comprehensive improvements to overcome the disadvantages of volume expansion, Li2O irreversibility and low conductivity of SnO2. Heterostructure construction has been investigated as an effective strategy to promote electron transfer and surface reaction kinetics, leading to high electrochemical performance. Herein, NiO/SnO2 heterojunction modified nitrogen doped graphene (NiO/SnO2@NG) anode materials were prepared using hydrothermal and carbonization techniques. Based on the excellent structural advantages, sufficiently small NiO/SnO2 heterojunction nanoparticles increase the interfacial density to promote Li2O decomposition, and the built-in electric field accelerates the charge transport rate to improve the conductivity. The three-dimensional porous graphene framework effectively mitigates volume expansion during cycling and stabilizes the reactive interface of electrode materials. The results show that the NiO/SnO2@NG mixture has high reversible specific capacity (938.8 mA h g-1 after 450 cycles at 0.1 A g-1), superior multiplicity performance (374.5 mA h g-1 at 3.0 A g-1) and long cycle life (685.3 mA h g-1 after 1000 cycles at 0.5 A g-1). Thus, this design of introducing NiO to form heterostructures with SnO2 is directly related to enhancing the electrochemical performance of lithium-ion batteries (LIBs).

9.
Int J Biol Macromol ; 254(Pt 2): 127851, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924920

RESUMO

Electromagnetic waves have an irreplaceable role as information carriers in civil and radar stealth fields, but they also lead to electromagnetic pollution and electromagnetic leakage. Therefore, electromagnetic wave absorbing materials that can reduce electromagnetic radiation have come into being. Especially, SnO2 has made a wave among many wave-absorbing materials as an easily tunable dielectric material, but it hardly has both broadband and powerful absorption properties. Here, the nested porous C/SnO2 composites derived from nitrogen-doped chitosan is obtained by freeze-drying and supplemented with carbonization treatment. The chitosan creates a nested cross-linked conductive network that can make part of the contribution to conduction loss. The amino groups contained in the molecule either help promote in situ nitrogen doping and trigger dipole polarization. The multiphase dissimilar interface between the nested carbon layer and the inner clad SnO2 formation is the major inducer of interfacial polarization. It reached intense absorption of -48.8 dB and bandwidth of 5.2 GHz at 3.46 mm. The interfacial polarization is confirmed to be the main force of dielectric loss by simulating the electromagnetic field distribution. In addition, the RCS simulation data assure the prospect of enticing applications of C/SnO2 composites in the field of radar stealth.


Assuntos
Quitosana , Micro-Ondas , Porosidade , Carbono , Nitrogênio
10.
Chemistry ; 30(19): e202302865, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37833823

RESUMO

Recently, it has become imperative to develop high energy density as well as high safety lithium-ion batteries (LIBS) to meet the growing energy demand. Among the anode materials used in LIBs, the currently used commercial graphite has low capacity and is a safety hazard due to the formation of lithium dendrites during the reaction. Among the transition metal oxide (TMO) anode materials, TMO based on the intercalation reaction mechanism has a more stable structure and is less prone to volume expansion than TMO based on the conversion reaction mechanism, especially the niobium-based oxide in it has attracted much attention. Niobium-based oxides have a high operating potential to inhibit the formation of lithium dendrites and lithium deposits to ensure safety, and have stable and fast lithium ion transport channels with excellent multiplicative performance. This review summarizes the recent developments of niobium-based oxides as anode materials for lithium-ion batteries, discusses the special structure and electrochemical reaction mechanism of the materials, the synthesis methods and morphology of nanostructures, deficiencies and improvement strategies, and looks into the future developments and challenges of niobium-based oxide anode materials.

11.
J Colloid Interface Sci ; 657: 54-62, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38035419

RESUMO

The excessive aggregation of magnetic metal particles and the resulting skin effect tend to cause a serious imbalance in impedance matching, which hinders its application in aerospace and military wave absorption fields. Obviously, effective dispersion configuration and network construction are two practical measures to develop broadband lightweight absorbers. Based on the recycling theme, pomegranate plasma heterostructure regulated one-dimensional (1D) biomass derived microtube networks are achieved through the conversion and utilization of waste Platanus ball fibers. The metal-organic framework strategy successfully avoids the hard agglomeration of metal particles. The pomegranate seed-like heterostructure effectively modulated the impedance of carbon microtubes, resulting in coordinated dielectric and magnetic losses. Such composites exhibited an effective absorbing bandwidth of 6.08 GHz and a minimum reflection loss of -29.8 dB. This work provides a new approach for constructing sustainable ultralight electromagnetic wave absorbers using plasmon modification and a 1D built-up network structure.

12.
Mikrochim Acta ; 190(11): 450, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875688

RESUMO

Metal-based nanozymes with exceptional physicochemical property and intrinsic enzymatic properties have been widely used in industrial, medical, and diagnostic fields. However, low substrate affinity results in unsatisfying catalytic kinetic and instability in complicated conditions, which significantly decreases their sensitivity and reliability. Herein, an amorphous hollow manganese silicate nanosphere (defined as AHMS) has been successfully synthesized via a facile one-step hydrothermal method and utilized in the archetype for colorimetric detection of biothiols with high sensitivity and high reliability. The experimental data demonstrates that ultrafast affinity of the substrate contributes to enhanced sensitivity with outstanding catalytic kinetic features (Km = 27.1 µM) and low limit of detection (LODGSH = 20 nM). The designed sensor demonstrates a reliable applicability for analysis of biological liquids (fetal calf serum and Staphylococcus aureus) and design of visual logic gates. Therefore, AHMS provides a promising strategy for ultrasensitive and high-reliable biosensing.


Assuntos
Nanosferas , Oxirredutases , Manganês/química , Colorimetria/métodos , Reprodutibilidade dos Testes , Silicatos
13.
Small ; 19(47): e2303019, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37548139

RESUMO

Nanostructured transitional metal compounds (TMCs) have demonstrated extraordinary promise for high-efficient and rapid lithium storage. However, good performance is usually limited to electrodes with low mass loading (≤1.0 mg cm-2 ) and is difficult to realize at higher mass loading due to increased electrons/ions transport limitations in the thicker electrode. Herein, the multi-dimensional synergistic nanoarchitecture design of graphene-wrapped MnO@carbon microcapsules (capsule-like MnO@C-G) is reported, which demonstrates impressive mass loading-independent lithium storage properties. Highly porous MnO nanoclusters assembled by 0D nanocrystals facilitate sufficient electrolyte infiltration and shorten the solid-state ions transport path. 1D carbon shell, 2D graphene, and 3D continuous network with tight interconnection accelerate electrons transport inside the thick electrode. The capsule-like MnO@C-G delivers ultrahigh gravimetric capacity retention of 91.0% as the mass loading increases 4.3 times, while the areal capacities increase linearly with the mass loading at various current densities. Specifically, the capsule-like MnO@C electrode delivers a remarkable areal capacity of 2.0 mAh cm-2 at a mass loading of 3.0 mg cm-2 . Moreover, the capsule-like MnO@C also demonstrates excellent performance in full battery applications. This study demonstrates the effectiveness of multi-dimensional synergistic nanoarchitecture in achieving mass loading-independent performance, which can be extended to other TMCs for electrochemical energy storage.

14.
J Colloid Interface Sci ; 650(Pt B): 1164-1173, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37473476

RESUMO

The high energy density and low self-discharge rate of lithium-ion batteries make them promising for large-scale energy storage. However, the practical development of such electrochemical energy storage systems relies heavily on the development of anode materials with high multiplier capacity and stable cycle life. Here, a simple and efficient one-step hydrothermal method is used to obtain stannide heterostructures, which are loaded on N-doped graphene (SnS2/SnO2@NG) that promotes Li+ diffusion for fast charge transfer. It is demonstrated that the built-in electric field generated by the electron transfer from electron-rich SnS2 to SnO2 in the stannide heterojunction collectively provides abundant cation adsorption sites, accelerating the migration of Li+ thus improving the electrochemical reaction kinetics. Besides, the SnS2/SnO2 nanoparticles have high structural stability, and the heterojunction compressive stresses obtained from density functional theory (DFT) calculations can significantly limit the structural damage. When applied as anodes in Li+ batteries with 300 cycles at 0.5 A/g, we achieved a high reversible capacity of 892.73 mAh/g. The rational design of low-cost batteries for energy storage and conversion can benefit from the quantitative design of fast and persistent charge transfer in a stannide heterostructure.

15.
Small ; 19(43): e2302914, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37357169

RESUMO

Changes in atomic bonding configuration in carbon from sp3 to sp2 are known to exist in certain structural defects in diamond, such as twin boundaries, grain boundaries, and dislocations, which have a significant impact on many properties of diamond. In this work, the atomic structure of fivefold twinning in detonation synthesized ultra-dispersed diamonds is investigated using a combination of techniques, including spherical aberration-corrected high-resolution electron microscopy (HREM), HREM image simulations, and molecular mechanics (MM) calculations. The experimental HREM images reveal clearly that the fivefold twinning in diamond has two distinct structures. In addition to the concentric fivefold twins, where the core structure is the intersection of five {111} twinning boundaries, a new extended core structure with co-hybridization of bonding is identified and analyzed in fivefold twinning. The atomic structure forming these fivefold twinning boundaries and their respective core structures is proposed to involve both the tetrahedral sp3 and planar graphitic sp2 bonding configurations, in which a co-hybridized planar hexagon of carbon serves as a fundamental structural unit. The presence of this sp2 -bonded planar unit of hexagonal carbon rings in general grain boundaries is also discussed.

16.
RSC Adv ; 13(6): 4102-4112, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36756567

RESUMO

Integrating silicon (Si) and graphitic carbon into micron-sized composites by spray-drying holds great potential in developing advanced anodes for high-energy-density lithium-ion batteries (LIBs). However, common graphite particles as graphitic carbon are always too large in three-dimensional size, resulting in inhomogeneous hybridization with nanosized Si (NSi); in addition, the rate capability of graphite is poor owing to sluggish intercalation kinetics. Herein, we integrated graphite nanosheets (GNs) with NSi to prepare porous NSi-GN-C microspheres by spray-drying and subsequent calcination with the assistance of glucose. Two-dimensional GNs with average thickness of ∼80 nm demonstrate superior lithium storage capacity, high conductivity, and flexibility, which could improve the electronic transfer kinetics and structural stability. Moreover, the porous structure buffers the volume expansion of Si during the lithiation process. The obtained NSi-GN-C microspheres manifest excellent electrochemical performance, including high initial coulombic efficiency of 85.9%, excellent rate capability of 94.4% capacity retention after 50 repeated high-rate tests, and good cyclic performance for 500 cycles at 1.0 A g-1. Kinetic analysis and in situ impedance spectra reveal dominant pseudocapacitive behavior with rapid and stable Li+ insertion/extraction processes. Ex situ morphology characterization demonstrates the ultra-stable integrated structure of the NSi-GN-C. The highly active GN demonstrates great potential to improve the lithium storage properties of Si, which provides new opportunity for constructing high-performance anodes for LIBs.

17.
Adv Healthc Mater ; 12(10): e2202441, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36577136

RESUMO

Nano-catalytic bacterial killing provides new opportunities to address ever-increasing antibiotic resistance. However, the intrinsic catalytic activity usually depends on a much lower pH conditions (pH = 2-5) than that in the weakly acidic bacterial microenvironments (pH = 6-7) for reactive oxygen species production by Fenton reactions. Herein, a MnSiO3 -based pH-ultrasensitive "in situ structure transformation" is first reported to significantly promote the adhesion between material and bacteria, and shorten the diffusion distance (<20 nm) to compensate ultra-short life (<200 ns) of ·OH generated by Mn2+ -mediated Fenton-like reaction, finally enhancing its nano-catalytic antibacterial performance in weakly acidic conditions. A separated spray bottle is further designed to achieve in situ gelation at the wound site, which demonstrates excellent shape adaptability to complicated and rough surfaces of wounds, allowing for long-term nano-catalyst release. As a result, bacterial-infected wound healing is efficiently promoted. Herein, the in situ sprayed nano-catalytic antibacterial gel presents a promising paradigm for bacterial infection treatment.


Assuntos
Antibacterianos , Infecções Bacterianas , Humanos , Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Cicatrização , Bactérias , Concentração de Íons de Hidrogênio
18.
J Colloid Interface Sci ; 629(Pt A): 44-52, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36049328

RESUMO

To solve the problem of dispersion of magnetic nanoparticles in ultralight electromagnetic absorption field, checkerboard-like nickel nanoislands/defect graphene aerogel (NIDG) with enhanced surface plasmon resonance was designed and prepared through electrostatic self-assembly method. This special structure successfully overcame the aggregation phenomenon of magnetic metals and built high-density gap regions to enhance surface plasmon resonance. And the NIDG has achieved excellent electromagnetic wave absorption performance in C band. Specially, NIDG is superior in ultra-lightness with only 6.2 wt%, compared to some recently reported magnetic electromagnetic wave absorbers. Such great performance can be attributed to the enhanced surface plasmon resonance and improved impedance matching. This work is significant for achieving effective dielectric loss and designing lightweight low-frequency EMW absorbing materials.

19.
Dalton Trans ; 51(43): 16497-16507, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36281964

RESUMO

Three-dimensional carbon-based materials have attracted much attention for electromagnetic wave absorption because low-dimensional materials have failed to meet the needs of constructing effective networks with ultra-light properties due to their easy agglomeration and in-plane stacking. The 3D element of quadrangular cone carbon was innovatively applied in this work to construct interconnected networks (MFC). This material successfully overcomes the disadvantages of easy agglomeration and in-plane stacking in low-dimensional elements, allowing for more efficient construction of absorbing networks. The prepared MFC exhibits excellent EAB (6.70 GHz) and RL (-50.92 dB), especially at an ultra-low filling ratio (1.04 wt%). Such superior performance can be attributed to the MFC effective network constructed by quadrangular cone carbon facilitating the entrance and diffuse scattering of electromagnetic waves. This study may provide new inspiration for constructing an effective absorbing network of pure carbon with 3D elements (quadrangular cone carbon), realizing ultra-low filling and broadband microwave performance.

20.
Dalton Trans ; 51(34): 12829-12838, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35959790

RESUMO

Two-phase heterostructures have received tremendous attention in energy-related fields as high-performance electrode materials. However, heterogeneous interfaces are usually constructed by introducing foreign elements, which disturbs the investigation of the intrinsic effect of the two-phase heterostructure. Herein, unique heterostructures constructed with orthorhombic NiSe2 and cubic NiSe2 phases are developed, which are embedded in in situ formed porous carbon from metal-organic frameworks (MOFs) (O/C-NiSe2@C). Precisely-controlled selenylation of MOFs is crucial for the formation of the O/C-NiSe2 heterostructure. The heterogeneous interfaces with lattice dislocations and charge distribution are conducive to the high-speed transfer of electrons and ions during electrochemical processes, so as to improve the electrochemical reaction kinetics for lithium-ion storage and the hydrogen evolution reaction (HER). When used as the anode of lithium-ion batteries (LIBs), O/C-NiSe2@C shows a superior electrochemical performance to the counterparts with only the cubic phase (C-NiSe2@C), in view of the cycling performance (719.3 mA h g-1 at 0.1 A g-1 for 100 cycles; 456.3 mA h g-1 at 1 A g-1 for 1000 cycles) and rate capabilities (344.8 mA h g-1 at 4 A g-1). Furthermore, O/C-NiSe2@C also exhibits better HER properties than C-NiSe2@C, that is, much lower overpotentials of 154 mV and 205 mV in 0.5 M H2SO4 and 1 M KOH, respectively, at 10 mA cm-2, a smaller Tafel slope as well as stable electrocatalytic activities for 2000 cycles/10 h. Preliminary observations indicate that the unique orthorhombic/cubic two-phase heterostructure could significantly improve the electrochemical performance of NiSe2 without additional modifications such as doping, suggesting the O/C-NiSe2 heterostructure as a promising bifunctional electrode for energy conversion and storage applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...