Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(22): 6000-6003, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966773

RESUMO

Controlling the bandwidth and directionality of thermal emission is important for a broad range of applications, from imaging and sensing to energy harvesting. Here, we propose a new, to the best of our knowledge, type of long-wavelength infrared narrowband thermal emitter that is basically composed of aperiodic Tamm plasmon polariton structures. Compared to the thermal emitter based on periodic structures, more parameters need to be considered. An inverse design algorithm instead of traditional forward methodologies is employed to do the geometric parameter optimization. Both theoretical and experimental results show that the thermal emitter exhibits a narrowband thermal emission peak at the wavelength of 8.6 µm in the normal direction. The angular response of emission properties of the thermal emitter is dependent on the emission angle. We believe that our proposed thermal emitter provides an alternative for low-cost, high-effective narrowband mid-infrared light sources and would have a great potential in many applications.

2.
Opt Lett ; 48(7): 1882-1885, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221790

RESUMO

The application of plasmonic structure has been demonstrated to improve the performance of infrared photodetectors. However, the successful experimental realization of the incorporation of such optical engineering structure into HgCdTe-based photodetectors has rarely been reported. In this paper, we present a HgCdTe infrared photodetector with integrated plasmonic structure. The experimental results show that the device with plasmonic structure has a distinct narrowband effect with a peak response rate close to 2 A/W, which is nearly 34% higher compared with the reference device. The simulation results are in good agreement with the experiment, and an analysis of the effect of the plasmonic structure is given, demonstrating the crucial role of the plasmonic structure in the enhancement of the device performance.

3.
Nanoscale Adv ; 5(7): 2054-2060, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36998670

RESUMO

In this work, we experimentally demonstrate a new type of compact, low-cost, visible microbolometer based on metal-insulator-metal (MIM) planar subwavelength thin films, which exploits resonant absorption for spectral selectivity without additional filters and has the advantages of compact design, simple structure, cost-efficiency, and large format fabrication. The experimental results show that a proof-of-principle microbolometer exhibits spectrally selective properties in the visible frequency range. At a resonant absorption wavelength of 638 nm, a responsivity of about 10 mV W-1 is achieved at room temperature at a bias current of 0.2 mA, which is about one order of magnitude higher than that of the control device (a bare Au bolometer). Our proposed approach provides a viable solution for the development of compact and inexpensive detectors.

4.
Opt Express ; 30(13): 24132-24144, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225080

RESUMO

Thermal infrared camouflage as a kind of counter-surveillance technique has attracted much attention owing to the rapid development of infrared surveillance technology. Various artificial optical structures have been developed for infrared camouflage applications under cold ambient environment (low thermal radiation), but the realization of infrared camouflage under a hot environment (high thermal radiation) is also highly desirable and has been rarely reported. Here, a lithography-free, ultra-thin, high performance long-wavelength infrared (LWIR) selective emitter for thermal infrared camouflage in a high radiation environment is proposed and experimentally demonstrated. Experimental results show that our designed selective emitter exhibits average emissivity higher than 90% over the LWIR range from 8 to 14 µm and low emissivity less than 35% outside this window. Numerical simulations were performed to optimize the geometrical structures and reveal that such a selective emission effect is attributed to the combination of multiple hybrid plasmonic resonances. LWIR thermal images show that the selective emitter can perfectly blend into the high radiation backgrounds. Furthermore, it is found that the sample displays angle-independent emission properties, indicating that our emitter offers great potential for application in evading large-angle detection.

5.
Opt Express ; 29(7): 11181-11193, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820236

RESUMO

Optical microcavities are capable of confining light to a small volume, which could dramatically enhance the light-matter interactions and hence improve the performances of photonic devices. However, in the previous works on the emergent properties with photonic molecules composed of multiple plasmonic microcavities, the underlying physical mechanism is unresolved, thereby imposing an inevitable restriction on manipulating degenerate modes in microcavity with outstanding performance. Here, we demonstrate the mode-mode interaction mechanism in photonic molecules composed of degenerate-mode cavity and single-mode cavity through utilizing the coupled mode theory. Numerical and analytical results further elucidate that the introduction of direct coupling between the degenerate-mode cavity and single-mode cavity can lift the mode degeneracy and give rise to the mode splitting, which contributes to single Fano resonance and dual EIT-like effects in the double-cavity photonic molecule structure. Four times the optical delay time compared to typical double-cavity photonic molecule are achieved after removing the mode degeneracy. Besides, with the preserved mode degeneracy, ultra-wide filtering bandwidth and high peak transmission is obtained in multiple-cavity photonic molecules. Our results provide a broad range of applications for ultra-compact and multifunction photonic devices in highly integrated optical circuits.

6.
Nanomaterials (Basel) ; 10(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321970

RESUMO

Transparent heat mirrors have been attracting a great deal of interest in the last few decades due to their broad applications, which range from solar thermal convection to energy-saving. Here, we present a flexible Polyethylene terephthalate/Ag-doped Indium tin oxide/Polydimethylsiloxane (PAIP) thin film that exhibits high transmittance in visible range and low emissivity in the thermal infrared region. Experimental results show that the temperature of the sample can be as high as 108 °C, which is ~23 °C higher than that of a blackbody control sample under the same solar radiation. Without solar radiation, the temperature of the PAIP thin film is ~6 °C higher than that of ordinary fabric. The versatility of the large-area, low-radiation-loss, highly-transparent and flexible hydrophobic PAIP thin film suggest great potential for practical applications in thermal energy harvesting and manipulation.

7.
Nanoscale ; 11(42): 19742-19750, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31626257

RESUMO

Thermal radiation with narrow bandwidth and well-defined emission directions is highly sought after for a variety of applications, ranging from infrared sensing and thermal imaging to thermophotovoltaics. Here, a large-area (4-inch-diameter) long-wavelength infrared thermal emitter is presented, which is spectrally selective, highly directional, and easily fabricated. The basic structure of the proposed thermal emitter is composed of a truncated one-dimensional photonic crystal and a continuous metallic film separated by a dielectric spacer. Experimental results show that the emitter exhibits a narrowband thermal emittance peak of 92% in the normal direction at the wavenumber of 943.4 cm-1 with a bandwidth of 12.5 cm-1 and a narrow angular emission lobe with a limited solid angle of 0.325 sr (0.115 sr) for s (p) polarization. Numerical simulation analyses are performed to corroborate the experimental observations. Temporal coupled-mode theory combined with transfer matrix method is employed to analytically investigate the emission properties of the structure, which not only can be used to understand the experimental results, but also plays a certain guidance role in designing a thermal emitter with the desired properties. The present thermal emitter can be implemented for thermal photonics management, allowing applications in thermal imaging and medical systems, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...