Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol ; 54(1): 55-64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37536387

RESUMO

Anthelmintic-resistant parasitic nematodes present a significant threat to sustainable livestock production worldwide. The ability to detect the emergence of anthelmintic resistance at an early stage, and therefore determine which drugs remain most effective, is crucial for minimising production losses. Despite many years of research into the molecular basis of anthelmintic resistance, no molecular-based tools are commercially available for the diagnosis of resistance as it emerges in field settings. We describe a mixed deep amplicon sequencing approach to determine the frequency of the levamisole (LEV)-resistant single nucleotide polymorphism (SNP) within arc-8 exon 4 (S168T) in Haemonchus spp., coupled with benzimidazole (BZ)-resistant SNPs within ß-tubulin isotype-1 and the internal transcribed spacer-2 (ITS-2) nemabiome. This constitutes the first known multi-drug and multi-species molecular diagnostic developed for helminths of veterinary importance. Of the ovine, bovine, caprine and camelid Australian field isolates we tested, S168T was detected in the majority of Haemonchus spp. populations from sheep and goats, but rarely at a frequency greater than 16%; an arbitrary threshold we set based on whole genome sequencing (WGS) of LEV-resistant Haemonchus contortus GWBII. Overall, BZ resistance was far more prevalent in Haemonchus spp. than LEV resistance, confirming that LEV is still an effective anthelmintic class for small ruminants in New South Wales, Australia. The mixed amplicon metabarcoding approach described herein paves the way towards the use of large scale sequencing as a surveillance technology in the field, the results of which can be translated into evidence-based recommendations for the livestock sector.


Assuntos
Anti-Helmínticos , Doenças dos Bovinos , Doenças das Cabras , Hemoncose , Haemonchus , Doenças dos Ovinos , Animais , Ovinos , Bovinos , Haemonchus/genética , Levamisol/farmacologia , Levamisol/uso terapêutico , Cabras/genética , Análise de Sequência de DNA/métodos , Austrália , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Ruminantes , Resistência a Medicamentos/genética , Hemoncose/veterinária , Hemoncose/parasitologia , Doenças das Cabras/tratamento farmacológico , Doenças dos Ovinos/parasitologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-35284896

RESUMO

Bovine trichomonosis, caused by infection with the protozoan parasite Tritrichomonas foetus, is globally recognised as a cause of reproductive failure in cattle. Maintained in clinically normal bulls, T. foetus infection results in infertility and abortion in infected cows. In Australia's Northern Territory (NT), logistical limitations associated with extensive livestock production inhibit wide-scale testing and diagnosis, allowing the parasite to persist undetected. In the present study, T. foetus was detected in 18/109 preputial cultures collected from bulls on a property in the NT with a history of low birth rates and reproductive failure using real-time PCR testing. Of the T. foetus-positive samples, 13/18 were genotyped using the internal transcribed spacer regions (ITS1 and ITS2) and the 5.8S rDNA unit. Selected samples were further characterised using the protein-coding genes of cysteine proteases (CP-1, 2, 4-9) and cytosolic malate dehydrogenase 1 (MDH-1) to determine if the isolates were 'bovine', 'feline' or 'Southern Africa' genotypes. All samples were 100% identical to the T. foetus 'bovine' genotype across all markers. This is the first reported case of trichomonosis in Australian cattle since 1988 and is a reminder that T. foetus should be considered whenever reproductive failure occurs in extensive cattle systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...