Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 17(8): 2046-2053, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35914245

RESUMO

Nonribosomal peptide synthetases (NRPSs) are a family of multidomain enzymes dedicated to the production of peptide natural products. Central to NRPS function are condensation (C) domains, which catalyze peptide bond formation and a number of specialized transformations including dehydroamino acid and ß-lactam synthesis. Structures of C domains in catalytically informative states are limited due to a lack of clear strategies for stabilizing C domain interactions with their substrates and client domains. Inspired by a ß-lactam forming C domain, we report herein the synthesis and application of 1, which forms irreversible cross-links with engineered thiol nucleophiles in a C domain active site. Deployment of 1 demonstrates the synthetic tractability of trapping late-stage nascent peptides in C domains and provides a readily adaptable tactic for stabilizing C domain interactions in multidomain NRPS fragments.


Assuntos
Peptídeo Sintases , beta-Lactamas , Domínio Catalítico , Humanos , Peptídeo Sintases/metabolismo , Peptídeos/química
2.
Elife ; 112022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35137688

RESUMO

Interferon-lambda (IFN-λ) protects intestinal epithelial cells (IECs) from enteric viruses by inducing expression of antiviral IFN-stimulated genes (ISGs). Here, we find that bacterial microbiota stimulate a homeostatic ISG signature in the intestine of specific pathogen-free mice. This homeostatic ISG expression is restricted to IECs, depends on IEC-intrinsic expression of IFN-λ receptor (Ifnlr1), and is associated with IFN-λ production by leukocytes. Strikingly, imaging of these homeostatic ISGs reveals localization to pockets of the epithelium and concentration in mature IECs. Correspondingly, a minority of mature IECs express these ISGs in public single-cell RNA sequencing datasets from mice and humans. Furthermore, we assessed the ability of orally administered bacterial components to restore localized ISGs in mice lacking bacterial microbiota. Lastly, we find that IECs lacking Ifnlr1 are hyper-susceptible to initiation of murine rotavirus infection. These observations indicate that bacterial microbiota stimulate ISGs in localized regions of the intestinal epithelium at homeostasis, thereby preemptively activating antiviral defenses in vulnerable IECs to improve host defense against enteric viruses.


Assuntos
Enterovirus/fisiologia , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/imunologia , Receptores de Interferon/genética , Animais , Fenômenos Fisiológicos Bacterianos , Feminino , Homeostase , Masculino , Camundongos , Receptores de Interferon/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33893237

RESUMO

Nonribosomal peptide synthetases (NRPSs) are large, multidomain biosynthetic enzymes involved in the assembly-line-like synthesis of numerous peptide natural products. Among these are clinically useful antibiotics including three classes of ß-lactams: the penicillins/cephalosporins, the monobactams, and the monocyclic nocardicins, as well as the vancomycin family of glycopeptides and the depsipeptide daptomycin. During NRPS synthesis, peptide bond formation is catalyzed by condensation (C) domains, which couple the nascent peptide with the next programmed amino acid of the sequence. A growing number of additional functions are linked to the activity of C domains. In the biosynthesis of the nocardicins, a specialized C domain prepares the embedded ß-lactam ring from a serine residue. Here, we examine the evolutionary descent of this unique ß-lactam-synthesizing C domain. Guided by its ancestry, we predict and demonstrate in vitro that this C domain alternatively performs peptide bond formation when a single stereochemical change is introduced into its peptide starting material. Remarkably, the function of the downstream thioesterase (TE) domain also changes. Natively, the TE directs C terminus epimerization prior to hydrolysis when the ß-lactam is made but catalyzes immediate release of the alternative peptide. In addition, we investigate the roles of C-domain histidine residues in light of clade-specific sequence motifs, refining earlier mechanistic proposals of both ß-lactam formation and canonical peptide synthesis. Finally, expanded phylogenetic analysis reveals unifying connections between ß-lactam synthesis and allied C domains associated with the appearance of ᴅ-amino acid and dehydroamino acid residues in other NRPS-derived natural products.


Assuntos
Antibacterianos/biossíntese , Evolução Molecular , Lactamas/metabolismo , Peptídeo Sintases/genética , Histidina/metabolismo , Peptídeo Sintases/metabolismo , Tioléster Hidrolases/metabolismo
4.
J Org Chem ; 83(17): 9580-9591, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-29870251

RESUMO

Targeting essential bacterial processes beyond cell wall, protein, nucleotide, and folate syntheses holds promise to reveal new antimicrobial agents and expand the potential drugs available for combination therapies. The synthesis of isoprenoid precursors, isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), is vital for all organisms; however, humans use the mevalonate pathway for production of IDP/DMADP while many pathogens, including Plasmodium falciparum and Mycobacterium tuberculosis, use the orthogonal methylerythritol phosphate (MEP) pathway. Toward developing novel antimicrobial agents, we have designed and synthesized a series of phosphonyl analogues of MEP and evaluated their abilities to interact with IspD, both as inhibitors of the natural reaction and as antimetabolite alternative substrates that could be processed enzymatically to form stable phosphonyl analogues as potential inhibitors of downstream MEP pathway intermediates. In this compound series, the S-monofluoro MEP analogue displays the most potent inhibitory activity against Escherichia coli IspD and is the best substrate for both the E. coli and P. falciparum IspD orthologues with a Km approaching that of the natural substrate for the E. coli enzyme. This work represents a first step toward the development of phosphonyl MEP antimetabolites to modulate early isoprenoid biosynthesis in human pathogens.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Aldose-Cetose Isomerases/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Eritritol/análogos & derivados , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Aldose-Cetose Isomerases/química , Alquilação , Domínio Catalítico , Técnicas de Química Sintética , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Eritritol/síntese química , Eritritol/química , Eritritol/metabolismo , Eritritol/farmacologia , Proteínas de Escherichia coli/química , Humanos , Modelos Moleculares , Complexos Multienzimáticos/química , Oxirredutases/química , Estereoisomerismo
5.
Chem Sci ; 6(8): 4778-4783, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142714

RESUMO

Src-family kinases (SFKs) play important roles in human biology and are key drug targets as well. However, achieving selective inhibition of individual Src-family kinases is challenging due to the high similarity within the protein family. We describe rhodium(ii) conjugates that deliver both potent and selective inhibition of Src-family SH3 domains. Rhodium(ii) conjugates offer dramatic affinity enhancements due to interactions with specific and unique Lewis-basic histidine residues near the SH3 binding interface, allowing predictable, structure-guided inhibition of SH3 targets that are recalcitrant to traditional inhibitors. In one example, a simple metallopeptide binds the Lyn SH3 domain with 6 nM affinity and exhibits functional activation of Lyn kinase under biologically relevant concentrations (EC50 ∼ 200 nM).

6.
Science ; 347(6219): 266-9, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25431490

RESUMO

The capacity of human norovirus (NoV), which causes >90% of global epidemic nonbacterial gastroenteritis, to infect a subset of people persistently may contribute to its spread. How such enteric viruses establish persistent infections is not well understood. We found that antibiotics prevented persistent murine norovirus (MNoV) infection, an effect that was reversed by replenishment of the bacterial microbiota. Antibiotics did not prevent tissue infection or affect systemic viral replication but acted specifically in the intestine. The receptor for the antiviral cytokine interferon-λ, Ifnlr1, as well as the transcription factors Stat1 and Irf3, were required for antibiotics to prevent viral persistence. Thus, the bacterial microbiome fosters enteric viral persistence in a manner counteracted by specific components of the innate immune system.


Assuntos
Infecções por Caliciviridae/virologia , Citocinas/fisiologia , Gastroenterite/virologia , Intestinos/microbiologia , Microbiota , Norovirus/fisiologia , Simbiose , Animais , Antibacterianos/farmacologia , Infecções por Caliciviridae/tratamento farmacológico , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/microbiologia , Feminino , Gastroenterite/tratamento farmacológico , Gastroenterite/imunologia , Gastroenterite/microbiologia , Intestinos/virologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/efeitos dos fármacos , Norovirus/imunologia , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Transdução de Sinais , Carga Viral , Replicação Viral , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA