Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros













Intervalo de ano de publicação
1.
Arch Microbiol ; 206(6): 261, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753095

RESUMO

The search for affordable enzymes with exceptional characteristics is fundamental to overcoming industrial and environmental constraints. In this study, a recombinant GH10 xylanase (Xyn10-HB) from the extremely alkaliphilic bacterium Halalkalibacterium halodurans C-125 cultivated at pH 10 was cloned and expressed in E. coli BL21(DE3). Removal of the signal peptide improved the expression, and an overall activity of 8 U/mL was obtained in the cell-free supernatant. The molecular weight of purified Xyn10-HB was estimated to be 42.6 kDa by SDS-PAGE. The enzyme was active across a wide pH range (5-10) with optimal activity recorded at pH 8.5 and 60 °C. It also presented good stability with a half-life of 3 h under these conditions. Substrate specificity studies showed that Xyn10-HB is a cellulase-free enzyme that conventionally hydrolyse birchwood and oat spelts xylans (Apparent Km of 0.46 mg/mL and 0.54 mg/mL, respectively). HPLC analysis showed that both xylans hydrolysis produced xylooligosaccharides (XOS) with a degree of polymerization (DP) ranging from 2 to 9. The conversion yield was 77% after 24 h with xylobiose and xylotriose as the main end-reaction products. When assayed on alkali-extracted wheat straw heteroxylan, the Xyn10-HB produced active XOS with antioxidant activity determined by the DPPH radical scavenging method (IC50 of 0.54 mg/mL after 4 h). Owing to its various characteristics, Xyn10-HB xylanase is a promising candidate for multiple biotechnological applications.


Assuntos
Endo-1,4-beta-Xilanases , Proteínas Recombinantes , Xilanos , Especificidade por Substrato , Hidrólise , Xilanos/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Clonagem Molecular , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Glucuronatos/metabolismo , Estabilidade Enzimática , Cinética , Peso Molecular , Oligossacarídeos/metabolismo , Dissacarídeos
2.
Psychopharmacology (Berl) ; 241(2): 327-340, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37966492

RESUMO

OBJECTIVE: Both animal and human studies, though limited, showed that multi-strain probiotic supplementation may reduce the number of seizures and/or seizure severity. Here, we evaluated the effect of a single strain probiotic supplementation on seizure susceptibility, antiseizure efficacy of sodium valproate, and several behavioral parameters in mice. METHODS: Lactobacillus helveticus R0052 was given orally for 28 days. Its influence on seizure thresholds was evaluated in the ivPTZ- and electrically-induced seizure tests. The effect on the antiseizure potency of valproate was assessed in the scPTZ test. We also investigated the effects of probiotic supplementation on anxiety-related behavior (in the elevated plus maze and light/dark box tests), motor coordination (in the accelerating rotarod test), neuromuscular strength (in the grip-strength test), and spontaneous locomotor activity. Serum and brain concentrations of valproate as well as cecal contents of SCFAs and lactate were determined using HPLC method. RESULTS: L. helveticus R0052 significantly increased the threshold for the 6 Hz-induced psychomotor seizure. There was also a slight increase in the threshold for myoclonic and clonic seizure in the ivPTZ test. L. helveticus R0052 did not affect the threshold for tonic seizures both in the maximal electroshock- and ivPTZ-induced seizure tests. No changes in the antiseizure potency of valproate against the PTZ-induced seizures were reported. Interestingly, L. helveticus R0052 increased valproate concentration in serum, but not in the brain. Moreover, L. helveticus R0052 did not produce any significant effects on anxiety-related behavior, motor coordination, neuromuscular strength, and locomotor activity. L. helveticus R0052 supplementation resulted in increased concentrations of total SCFAs, acetate, and butyrate. CONCLUSIONS: Altogether, this study shows that a single-strain probiotic - L. helveticus R0052 may decrease seizure susceptibility and this effect can be mediated, at least in part, by increased production of SCFAs. In addition, L. helveticus R0052 may affect bioavailability of valproate, which warrants further investigations.


Assuntos
Lactobacillus helveticus , Ácido Valproico , Humanos , Camundongos , Animais , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Convulsões/tratamento farmacológico , Encéfalo , Suplementos Nutricionais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Eletrochoque
3.
Psychopharmacology (Berl) ; 241(5): 925-945, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38156998

RESUMO

RATIONALE: The gut microbiota may play an important role in the development and functioning of the mammalian central nervous system. The assumption of the experiment was to prove that the use of probiotic bacterial strains in the diet of mice modifies the expression of brain proteins involved in metabolic and immunological processes. OBJECTIVES AND RESULTS: Albino Swiss mice were administered with Bifidobacterium longum Rosell®-175 or Lactobacillus rhamnosus JB-1 every 24 h for 28 days. Protein maps were prepared from hippocampal homogenates of euthanized mice. Selected proteins that were statistically significant were purified and concentrated and identified using MALDI-TOF mass spectrometry. Among the analysed samples, 13 proteins were identified. The mean volumes of calcyon, secreted frizzled-associated protein 3, and catalase in the hippocampus of mice from both experimental groups were statistically significantly higher than in the control group. In mice supplemented with Lactobacillus rhamnosus JB-1, a lower mean volume of fragrance binding protein 2, shadow of prion protein, and glycine receptor α4 subunit was observed compared to the control. CONCLUSION: The psychobiotics Bifidobacterium longum Rosell®-175 and Lactobacillus rhamnosus JB-1enhances expression of proteins involved in the activation and maturation of nerve cells, as well as myelination and homeostatic regulation of neurogenesis in mice. The tested psychobiotics cause a decrease in the expression of proteins associated with CNS development and in synaptic transmission, thereby reducing the capacity for communication between nerve cells. The results of the study indicate that psychobiotic bacteria can be used in auxiliary treatment of neurological disorders.


Assuntos
Bifidobacterium longum , Lacticaseibacillus rhamnosus , Camundongos , Animais , Proteoma , Encéfalo , Mamíferos
4.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894955

RESUMO

In this report, we discuss the effects of undescribed flavone derivatives, HZ4 and SP9, newly isolated from the aerial parts of Hottonia palustris L. and Scleranthus perennis L. on membranes. Interaction of flavonoids with lipid bilayers is important for medicinal applications. The experiments were performed with FTIR and NMR techniques on liposomes prepared from DPPC (dipalmitoylphosphatidylcholine) and EYPC (egg yolk phosphatidylcholine). The data showed that the examined polyphenols incorporate into the polar head group region of DPPC phospholipids at both 25 °C and 45 °C. At the lower temperature, a slight effect in the spectral region of the ester carbonyl group is observed. In contrast, at 45 °C, both compounds bring about the changes in the spectral regions attributed to antisymmetric and symmetric stretching vibrations of CH2 and CH3 moieties. Similarly, as in DPPC lipids, the tested compounds interact with the fingerprint region of the polar head groups of the EYPC lipids and cause its reorganization. The outcomes obtained by NMR analyses confirmed the localization of both flavonoids in the polar heads zone. Unraveled effects of HZ4 and SP9 in respect to lipid bilayers can partly determine their biological activities and are crucial for their usability in medicine as disease-preventing phytochemicals.


Assuntos
Flavonoides , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Lipossomos/química , Espectroscopia de Ressonância Magnética , 1,2-Dipalmitoilfosfatidilcolina/química
5.
Molecules ; 28(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630373

RESUMO

Fungi are a unique natural resource rich in polysaccharides, proteins, and other components. Polysaccharides are considered one of the most important bioactive components in fungi. Increasing numbers of studies have confirmed that fungal polysaccharides have various biological activities. Given these facts, the main aim of this investigation was to carry out isolation, identification, and structural characterisation of a new polysaccharide (EPS) derived from laboratory-cultured vegetative mycelium of a new Spongipellis borealis strain isolated from the environment. The examination of monosaccharides in the EPS demonstrated that the isolated biopolymer was composed mainly of glucose, galactose, and mannose monomers. The analysis of the methylation of the studied polymer indicated that it contained mainly terminal, →3)-linked, →4)-linked, and →2,4)-linked hexoses. The effect of fungal polysaccharides on S. borealis proteolytic enzymes (pepsin, trypsin, and pycnoporopepsin) and laccase activity was determined for the first time. Incubation of the enzyme preparation and EPS showed an influence of EPS on the stability of these enzymes, compared to the control values (without EPS).


Assuntos
Polissacarídeos Fúngicos , Polyporales , Polissacarídeos Fúngicos/farmacologia , Madeira , Biotecnologia , Fungos , Peptídeo Hidrolases
6.
Molecules ; 28(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37241952

RESUMO

Despite the progress of medicine, colorectal cancer has occupied one of the highest positions in the rankings of cancer morbidity and mortality for many years. Thus, alternative methods of its treatment are sought. One of the newer therapeutic strategies is immunotherapy based on NK cells (natural killers), which are the body's first line of defense against cancer. The aim of the study was to verify the possibility of using (1→3)-α-d-glucooligosaccharides (GOSs) obtained via acid hydrolysis of (1→3)-α-d-glucan from the fruiting body of Laetiporus sulphureus to improve the anticancer effect of NK-92 cells, with proven clinical utility, against selected human colon adenocarcinoma cell lines LS180 and HT-29. The study revealed that the investigated oligosaccharides significantly enhanced the ability of NK-92 cells to eliminate the examined colon cancer cells, mostly by an increase in their cytotoxic activity. The most significant effect was observed in LS180 and HT-29 cells exposed to a two-times higher quantity of NK cells activated by 500 µg/mL GOS, wherein NK-92 killing properties increased for 20.5% (p < 0.001) and 24.8% (p < 0.001), respectively. The beneficial impact of (1→3)-α-d-glucooligosaccharides on the anticancer properties of NK-92 suggests their use in colon cancer immunotherapy as adjuvants; however, the obtained data require further investigation and confirmation.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Humanos , Neoplasias do Colo/tratamento farmacológico , Adenocarcinoma/tratamento farmacológico , Células Matadoras Naturais , Células HT29 , Antineoplásicos/farmacologia
7.
Food Chem ; 417: 135928, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933426

RESUMO

We investigated the modulating effect of α-(1→3)-glucooligosaccharides (GOS), i.e. a product of fungal α-(1→3)-d-glucan hydrolysis, on the gut microbiota composition. Mice were fed with a GOS-supplemented diet and two control diets for 21 days, and fecal samples were collected at 0, 1, and 3-week time points. The bacterial community composition was determined by 16S rRNA gene Illumina sequencing. The gut microbiota of the GOS-supplemented mice showed profound time-dependent changes in the taxonomic composition; however, we did not observe significant changes in α-diversity indices. The biggest number of genus abundance shifts after 1 week of the treatment was noticed between the group of the GOS-supplemented mice and the controls; however, the differences were still relevant after the 3-week treatment. The GOS-supplemented mice displayed higher abundance of Prevotella spp., with a concomitant decrease in the abundance of Escherichia-Shigella. Hence, GOS seems to be a promising candidate for a new prebiotic.


Assuntos
Microbioma Gastrointestinal , Prebióticos , Camundongos , Animais , Prebióticos/análise , Glucanos , RNA Ribossômico 16S/genética , Hidrólise , Fezes/microbiologia , Oligossacarídeos
8.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902263

RESUMO

Despite the common use of Potentilla L. species (Rosaceae) as herbal medicines, a number of species still remain unexplored. Thus, the present study is a continuation of a study evaluating the phytochemical and biological profiles of aqueous acetone extracts from selected Potentilla species. Altogether, 10 aqueous acetone extracts were obtained from the aerial parts of P. aurea (PAU7), P. erecta (PER7), P. hyparctica (PHY7), P. megalantha (PME7), P. nepalensis (PNE7), P. pensylvanica (PPE7), P. pulcherrima (PPU7), P. rigoi (PRI7), and P. thuringiaca (PTH7), leaves of P. fruticosa (PFR7), as well as from the underground parts of P. alba (PAL7r) and P. erecta (PER7r). The phytochemical evaluation consisted of selected colourimetric methods, including total phenolic (TPC), tannin (TTC), proanthocyanidin (TPrC), phenolic acid (TPAC), and flavonoid (TFC) contents, as well as determination of the qualitative secondary metabolite composition by the employment of LC-HRMS (liquid chromatography-high-resolution mass spectrometry) analysis. The biological assessment included an evaluation of the cytotoxicity and antiproliferative properties of the extracts against human colon epithelial cell line CCD841 CoN and human colon adenocarcinoma cell line LS180. The highest TPC, TTC, and TPAC were found in PER7r (326.28 and 269.79 mg gallic acid equivalents (GAE)/g extract and 263.54 mg caffeic acid equivalents (CAE)/g extract, respectively). The highest TPrC was found in PAL7r (72.63 mg catechin equivalents (CE)/g extract), and the highest TFC was found in PHY7 (113.29 mg rutin equivalents (RE)/g extract). The LC-HRMS analysis showed the presence of a total of 198 compounds, including agrimoniin, pedunculagin, astragalin, ellagic acid, and tiliroside. An examination of the anticancer properties revealed the highest decrease in colon cancer cell viability in response to PAL7r (IC50 = 82 µg/mL), while the strongest antiproliferative effect was observed in LS180 treated with PFR7 (IC50 = 50 µg/mL) and PAL7r (IC50 = 52 µg/mL). An LDH (lactate dehydrogenase) assay revealed that most of the extracts were not cytotoxic against colon epithelial cells. At the same time, the tested extracts for the whole range of concentrations damaged the membranes of colon cancer cells. The highest cytotoxicity was observed for PAL7r, which in concentrations from 25 to 250 µg/mL increased LDH levels by 145.7% and 479.0%, respectively. The previously and currently obtained results indicated that some aqueous acetone extracts from Potentilla species have anticancer potential and thus encourage further studies in order to develop a new efficient and safe therapeutic strategy for people who have been threatened by or suffered from colon cancer.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Potentilla , Humanos , Extratos Vegetais/química , Acetona , Flavonoides/análise , Fenóis/química , Compostos Fitoquímicos , Antioxidantes/química
9.
Biochim Biophys Acta Biomembr ; 1865(4): 184142, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36848998

RESUMO

The aim of this study was to characterize, for the first time, the interactions, location, and influence of flavonoids isolated from aerial parts of Scleranthus perennis (Caryophyllaceae) and Hottonia palustris (Primulaceae) on the properties of model lipid membranes prepared from dipalmitoylphosphatidylcholine (DPPC) and egg yolk phosphatidylcholine (EYPC). The tested compounds incorporated into liposomes into the region of the polar heads or at the water/membrane interface of DPPC phospholipids. Spectral effects accompanying the presence of polyphenols revealed their effect on ester carbonyl groups apart from SP8. All polyphenols brought about reorganization of the polar zone of liposomes as it was observed by FTIR technique. Additionally, fluidization effect was noted in the region of symmetric and antisymmetric stretching vibrations of the CH2 and CH3 groups with exception to HZ2 and HZ3. Similarly, in EYPC liposomes, they interacted mainly with the regions of the choline heads of the lipids and had various effects on the carbonyl ester groups with exception to SP8. The region of polar head groups is restructured due to the presence of the additives in liposomes. The outcomes obtained using the NMR technique confirmed the locations of all of the tested compounds in the polar zone and indicated a flavonoid-dependent modifying effect towards lipid membranes. HZ1 and SP8 raised motional freedom in this region whereas opposite effect was revealed for HZ2 and HZ3. In the hydrophobic region restricted mobility was noted. In this report we discuss the mechanism of previously undescribed flavonoids in terms of their actions on membranes.


Assuntos
Caryophyllaceae , Primulaceae , Lipossomos/química , Flavonoides , Fosfolipídeos , Componentes Aéreos da Planta
10.
Artigo em Inglês | MEDLINE | ID: mdl-36767825

RESUMO

Due to a widespread occurrence of multidrug-resistant pathogenic strains of bacteria, there is an urgent need to look for antimicrobial substances, and honey with its antimicrobial properties is a very promising substance. In this study, we examined for the first time antimicrobial properties of novel varietal honeys, i.e., plum, rapeseed, Lime, Phacelia, honeydew, sunflower, willow, and multifloral-P (Prunus spinosa L.), multifloral-AP (Acer negundo L., Prunus spinosa L.), multifloral-Sa (Salix sp.), multifloral-Br (Brassica napus L.). Their antimicrobial activity was tested against bacteria (such as Escherichia coli, Bacillus circulans, Staphylococcus aureus, Pseudomonas aeruginosa), yeasts (such as Saccharomyces cerevisiae and Candida albicans) and mold fungi (such as Aspergillus niger). In tested honeys, phenolic acids constituted one of the most important groups of compounds with antimicrobial properties. Our study found phenolic acids to occur in greatest amount in honeydew honey (808.05 µg GAE/g), with the highest antifungal activity aiming at A. niger. It was caffeic acid that was discovered in the greatest amount (in comparison with all phenolic acids tested). It was found in the highest amount in such honeys as phacelia-356.72 µg/g, multifloral (MSa) and multifloral (MBr)-318.9 µg/g. The highest bactericidal activity against S. aureus was found in multifloral honeys MSa and MBr. Additionally, the highest amount of syringic acid and cinnamic acid was identified in rapeseed honey. Multifloral honey (MAP) showed the highest bactericidal activity against E. coli, and multifloral honey (MSa) against S. aureus. Additionally, multifloral honey (MBr) was effective against E. coli and S. aureus. Compounds in honeys, such as lysozyme-like and phenolic acids, i.e., coumaric, caffeic, cinnamic and syringic acids, played key roles in the health-benefit properties of honeys tested in our study.


Assuntos
Mel , Staphylococcus aureus , Testes de Sensibilidade Microbiana , Escherichia coli , Antibacterianos/farmacologia , Bactérias
11.
Front Pharmacol ; 13: 1027315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249795

RESUMO

Cinquefoils have been widely used in local folk medicine in Europe and Asia to manage various gastrointestinal inflammations and/or infections, certain forms of cancer, thyroid gland disorders, and wound healing. In the present paper, acetone extracts from aerial parts of selected Potentilla species, namely P. alba (PAL7), P. argentea (PAR7), P. grandiflora (PGR7), P. norvegica (PN7), P. recta (PRE7), and the closely related Drymocalis rupestris (syn. P. rupestris) (PRU7), were analysed for their cytotoxicity and antiproliferative activities against human colon adenocarcinoma cell line LS180 and human colon epithelial cell line CCD841 CoN. Moreover, quantitative assessments of the total polyphenolic (TPC), total tannin (TTC), total proanthocyanidins (TPrC), total flavonoid (TFC), and total phenolic acid (TPAC) were conducted. The analysis of secondary metabolite composition was carried out by LC-PDA-HRMS. The highest TPC and TTC were found in PAR7 (339.72 and 246.92 mg gallic acid equivalents (GAE)/g extract, respectively) and PN7 (332.11 and 252.3 mg GAE/g extract, respectively). The highest TPrC, TFC, and TPAC levels were found for PAL7 (21.28 mg catechin equivalents (CAT)/g extract, 71.85 mg rutin equivalents (RE)/g extract, and 124.18 mg caffeic acid equivalents (CAE)/g extract, respectively). LC-PDA-HRMS analysis revealed the presence of 83 compounds, including brevifolincarboxylic acid, ellagic acid, pedunculagin, agrimoniin, chlorogenic acid, astragalin, and tiliroside. Moreover, the presence of tri-coumaroyl spermidine was demonstrated for the first time in the genus Potentilla. Results of the MTT assay revealed that all tested extracts decreased the viability of both cell lines; however, a markedly stronger effect was observed in the colon cancer cells. The highest selectivity was demonstrated by PAR7, which effectively inhibited the metabolic activity of LS180 cells (IC50 = 38 µg/ml), while at the same time causing the lowest unwanted effects in CCD841 CoN cells (IC50 = 1,134 µg/ml). BrdU assay revealed a significant decrease in DNA synthesis in both examined cell lines in response to all investigated extracts. It should be emphasized that the tested extracts had a stronger effect on colon cancer cells than normal colon cells, and the most significant antiproliferative properties were observed in the case of PAR7 (IC50 LS180 = 174 µg/ml) and PN7 (IC50 LS180 = 169 µg/ml). The results of LDH assay revealed that all tested extracts were not cytotoxic against normal colon epithelial cells, whereas in the cancer cells, all compounds significantly damaged cell membranes, and the observed effect was dose-dependent. The highest cytotoxicity was observed in LS180 cells in response to PAR7, which, in concentrations ranging from 25 to 250 µg/ml, increased LDH release by 110%-1,062%, respectively. Performed studies have revealed that all Potentilla species may be useful sources for anti-colorectal cancer agents; however, additional research is required to prove this definitively.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35329164

RESUMO

Root-feeding Amphimallon solstitiale larvae and certain other scarab beetles are the main soil-dwelling pests found in Europe, while entomopathogenic nematodes (EPN) have been used as a biocontrol agent against these species. Our study provides the first detailed characterization of the bacterial community of the midgut in wild A. solstitiale larvae, based on the nanopore sequencing of the 16S rRNA gene. In the whole dataset, we detected 2586 different genera and 11,641 species, with only 83 diverse bacterial genera shared by all studied individuals, which may represent members of the core midgut microbiota of A. solstitiale larvae. Subsequently, we compared the midgut microbiota of EPN-resistant and T0 (prior to EPN exposure) individuals, hypothesizing that resistance to this parasitic infection may be linked to the altered gut community. Compared to the control, the resistant insect microbiota demonstrated lower Shannon and Evenness indices and significant differences in the community structure. Our studies confirmed that the gut microbiota alternation is associated with resistant insects; however, there are many processes involved that can affect the bacterial community. Further research on the role of gut microbiota in insect-parasitic nematode interaction may ultimately lead to the improvement of biological control strategies in insect pest management.


Assuntos
Besouros , Microbiota , Sequenciamento por Nanoporos , Nematoides , Animais , Bactérias/genética , Insetos/genética , Larva/parasitologia , Nematoides/genética , RNA Ribossômico 16S/genética
13.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769435

RESUMO

Entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) are a group of organisms capable of infecting larvae of insects living in soil, including representatives of the family Scarabaeidae. Their insecticidal activity is related to the presence of symbiotic bacteria Xenorhabdus spp. or Photorhabdus spp. in the alimentary tract, which are released into the insect body, leading to its death caused by bacterial toxins and septicemia. Although the antibacterial activities of symbionts of entomopathogenic nematodes have been well described, there is insufficient knowledge of the interactions between these bacteria and microorganisms that naturally inhabit the alimentary tract of insects infested by nematodes. In this study, 900 bacterial strains isolated from midgut samples of Amphimallon solstitiale larvae were tested for their antagonistic activity against the selected five Xenorhabdus and Photorhabdus species. Cross-streak tests showed significant antibacterial activity of 20 isolates. These bacteria were identified as Bacillus [Brevibacterium] frigoritolerans, Bacillus toyonensis, Bacillus wiedmannii, Chryseobacterium lathyri, Chryseobacterium sp., Citrobacter murliniae, Enterococcus malodoratus, Paenibacillus sp., Serratia marcescens and Serratia sp. Since some representatives of the intestinal microbiota of A. solstitiale are able to inhibit the growth of Xenorhabdus and Photorhrhabdus bacteria in vitro, it can be assumed that this type of bacterial interaction may occur at certain stages of insect infection by Steinernema or Heterorhabditis nematodes.


Assuntos
Besouros/microbiologia , Microbioma Gastrointestinal , Photorhabdus/isolamento & purificação , Xenorhabdus/isolamento & purificação , Animais , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Toxinas Bacterianas , Larva , Simbiose
14.
Molecules ; 26(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443685

RESUMO

Recognition of pathogen-associated molecular patterns (PAMPs) by appropriate pattern recognition receptors (PRRs) is a key step in activating the host immune response. The role of a fungal PAMP is attributed to ß-1,3-glucan. The role of α-1,3-glucan, another fungal cell wall polysaccharide, in modulating the host immune response is not clear. This work investigates the potential of α-1,3-glucan as a fungal PAMP by analyzing the humoral immune response of the greater wax moth Galleria mellonella to Aspergillus niger α-1,3-glucan. We demonstrated that 57-kDa and 61-kDa hemolymph proteins, identified as ß-1,3-glucan recognition proteins, bound to A. niger α-1,3-glucan. Other hemolymph proteins, i.e., apolipophorin I, apolipophorin II, prophenoloxidase, phenoloxidase activating factor, arylphorin, and serine protease, were also identified among α-1,3-glucan-interacting proteins. In response to α-1,3-glucan, a 4.5-fold and 3-fold increase in the gene expression of antifungal peptides galiomicin and gallerimycin was demonstrated, respectively. The significant increase in the level of five defense peptides, including galiomicin, corresponded well with the highest antifungal activity in hemolymph. Our results indicate that A. niger α-1,3-glucan is recognized by the insect immune system, and immune response is triggered by this cell wall component. Thus, the role of a fungal PAMP for α-1,3-glucan can be postulated.


Assuntos
Aspergillus/química , Glucanos/metabolismo , Interações Hospedeiro-Patógeno , Mariposas/microbiologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Animais , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Corpo Adiposo/efeitos dos fármacos , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hemolinfa/metabolismo , Imunização , Larva , Mariposas/efeitos dos fármacos , Mariposas/genética , Ligação Proteica/efeitos dos fármacos , Análise de Sobrevida
15.
J Nematol ; 532021.
Artigo em Inglês | MEDLINE | ID: mdl-34079955

RESUMO

A new species of entomopathogenic nematodes, Steinernema sandneri n. sp., was recovered by baiting from Poland. Its morphological traits indicate that the new species is a member of the feltiae-kraussei group. A body length of 843 (708-965) µm, a more anterior position of excretory pore (56 µm), and the lower D% value (40 vs > 46) discriminate this species from most of the other group members. The first-generation males of S. sandneri n. sp. can be distinguished from the other clade members by a 60 µm long spicule, a relatively long gubernaculum (GS% = 79), and the position of the excretory pore (80 µm). Phylogenetic analysis of the ITS rDNA, D2D3 of 28 S rDNA, and cox1 sequences confirmed that S. sandneri n. sp. is a new species of the feltiae-kraussei group, closely related to S. kraussei and S. silvaticum.

16.
Pathogens ; 10(4)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806200

RESUMO

This study focused on the potential relationships between midgut microbiota of the common cockchafer Melolontha melolontha larvae and their resistance to entomopathogenic nematodes (EPN) infection. We investigated the bacterial community associated with control and unsusceptible EPN-exposed insects through nanopore sequencing of the 16S rRNA gene. Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the most abundant bacterial phyla within the complex and variable midgut microbiota of the wild M. melolontha larvae. The core microbiota was found to include 82 genera, which accounted for 3.4% of the total number of identified genera. The EPN-resistant larvae differed significantly from the control ones in the abundance of many genera belonging to the Actinomycetales, Rhizobiales, and Clostridiales orders. Additionally, the analysis of the microbiome networks revealed different sets of keystone midgut bacterial genera between these two groups of insects, indicating differences in the mutual interactions between bacteria. Finally, we detected Xenorhabdus and Photorhabdus as gut residents and various bacterial species exhibiting antagonistic activity against these entomopathogens. This study paves the way to further research aimed at unravelling the role of the host gut microbiota on the output of EPN infection, which may contribute to enhancement of the efficiency of nematodes used in eco-friendly pest management.

17.
Molecules ; 25(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33255915

RESUMO

Increasing knowledge of the role of the intestinal microbiome in human health and well-being has resulted in increased interest in prebiotics, mainly oligosaccharides of various origins. To date, there are no reports in the literature on the prebiotic properties of oligosaccharides produced by the hydrolysis of pure fungal α-(1→3)-glucan. The aim of this study was to prepare α-(1→3)-glucooligosaccharides (α-(1→3)-GOS) and to perform initial evaluation of their prebiotic potential. The oligosaccharides were obtained by acid hydrolysis of α-(1→3)-glucan isolated from the fruiting bodies of Laetiporus sulphureus and then, characterized by HPLC. Fermentation of α-(1→3)-GOS and reference prebiotics was compared in in vitro pure cultures of Lactobacillus, Bifidobacterium, and enteric bacterial strains. A mixture of α-(1→3)-GOS, notably with a degree of polymerization of 2 to 9, was obtained. The hydrolysate was utilized for growth by most of the Lactobacillus strains tested and showed a strong bifidogenic effect, but did not promote the growth of Escherichia coli and Enterococcus faecalis. α-(1→3)-GOS proved to be effective in the selective stimulation of beneficial bacteria and can be further tested to determine their prebiotic functionality.


Assuntos
Polissacarídeos Fúngicos/química , Glucanos/química , Oligossacarídeos/química , Polyporales/química , Prebióticos , Cromatografia Líquida de Alta Pressão , Humanos , Hidrólise
18.
Pathog Dis ; 78(9)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33232457

RESUMO

Alpha-1,3-glucan, in addition to ß-1,3-glucan, is an important polysaccharide component of fungal cell walls. It is reported for many fungal species, including human pathogenic genera: Aspergillus, Blastomyces, Coccidioides, Cryptococcus, Histoplasma and Pneumocystis, plant pathogens, e.g. Magnaporthe oryzae and entomopathogens, e.g. Metarhizium acridum. In human and plant pathogenic fungi, α-1,3-glucan is considered as a shield for the ß-1,3-glucan layer preventing recognition of the pathogen by the host. However, its role in induction of immune response is not clear. In the present study, the cellular immune response of the greater wax moth Galleria mellonella to Aspergillus niger α-1,3-glucan was investigated for the first time. The changes detected in the total hemocyte count (THC) and differential hemocyte count (DHC), formation of hemocyte aggregates and changes in apolipophorin III localization indicated activation of G. mellonella cellular mechanisms in response to immunization with A. niger α-1,3-glucan. Our results, which have clearly demonstrated the response of the insect immune system to this fungal cell wall component, will help in understanding the α-1,3-glucan role in immune response against fungal pathogens not only in insects but also in mammals, including humans.


Assuntos
Apolipoproteínas/imunologia , Aspergilose/imunologia , Glucanos/imunologia , Hemócitos/imunologia , Imunidade Celular , Mariposas , Animais , Apolipoproteínas/metabolismo , Aspergillus niger/imunologia , Aspergillus niger/metabolismo , Parede Celular/química , Modelos Animais de Doenças , Glucanos/metabolismo , Hemócitos/microbiologia , Interações entre Hospedeiro e Microrganismos , Larva/imunologia , Larva/microbiologia , Mariposas/imunologia , Mariposas/microbiologia
19.
Molecules ; 25(13)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640760

RESUMO

The aim of this study was to determine the anti-tumor activity of extracts isolated from Potentilla alba L. on human colon cancer cells of the HT-29 line and on non-cancer colon epithelial cells of the CCD 841 CoTr line. The research methods we used to determine the cytotoxic and proliferative properties were 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red (NR) assays, the ability to produce nitric oxide, the Griess method, and the biochemical properties like 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods indicating reduction activity of tested samples. Finally, the effects of the extracts on the morphology and cell counts were assessed by May-Grünwald-Giemsa staining. After a comprehensive analysis of all the experiments, the extracts were found to demonstrate cytotoxic properties, they stimulated the division of non-cancer cells, and they were able to scavenge free radicals. In the NR method, the cell viability dropped to approximately 80% compared to the control. In the MTT assay, tumor cell proliferation decreased to 9.5% compared to the control. Therefore, we concluded that this plant has medical potential.


Assuntos
Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Células Epiteliais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Potentilla/química , Compostos de Bifenilo/química , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Espectrometria de Massas , Óxido Nítrico/metabolismo , Picratos/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
20.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471277

RESUMO

Fourier transform infrared (FT-IR) and Raman spectroscopy and mapping were applied to the analysis of biofilms produced by bacteria of the genus Streptococcus. Bacterial biofilm, also called dental plaque, is the main cause of periodontal disease and tooth decay. It consists of a complex microbial community embedded in an extracellular matrix composed of highly hydrated extracellular polymeric substances and is a combination of salivary and bacterial proteins, lipids, polysaccharides, nucleic acids, and inorganic ions. This study confirms the value of Raman and FT-IR spectroscopies in biology, medicine, and pharmacy as effective tools for bacterial product characterization.


Assuntos
Biofilmes , Cárie Dentária/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Streptococcus/patogenicidade , Proteínas de Bactérias/química , Matriz Extracelular/química , Humanos , Polissacarídeos Bacterianos/química , Saliva/química , Saliva/microbiologia , Streptococcus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA