Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Neurobiol Dis ; 51: 27-34, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22426394

RESUMO

The development of neurologic disease is a complex and multi-faceted process. Several factors, such as physiology, environment and genetics may play key roles in the manifestation of the associated illnesses. During the past decades, it has become clear that, at the cellular level, mitochondria function as more than "just" an energy source for our cells and plays a significant role in such aspects as neuronal development, maintenance and degeneration. Malfunctions in mitochondrial respiration and ATP production may prove disastrous for our cells and neurons, ultimately resulting in apoptosis, neurodegeneration and consequently, neurodegenerative diseases.


Assuntos
Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Fosforilação Oxidativa , Animais , Metabolismo Energético/fisiologia , Humanos , Mitocôndrias/patologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia
3.
Biochim Biophys Acta ; 1817(11): 1971-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22796146

RESUMO

Oxidative phosphorylation disorders are often associated with increased oxidative stress and antioxidant therapy is frequently given as treatment. However, the role of oxidative stress in oxidative phosphorylation disorders or patients is far from clear and consequently the preventive or therapeutic effect of antioxidants is highly anecdotic. Therefore, we performed a systematic study of a panel of oxidative stress parameters (reactive oxygen species levels, damage and defense) in fibroblasts of twelve well-characterized oxidative phosphorylation patients with a defect in the POLG1 gene, in the mitochondrial DNA-encoded tRNA-Leu gene (m.3243A>G or m.3302A>G) and in one of the mitochondrial DNA-encoded NADH dehydrogenase complex I (CI) subunits. All except two cell lines (one POLG1 and one tRNA-Leu) showed increased reactive oxygen species levels compared with controls, but only four (two CI and two tRNA-Leu) cell lines provided evidence for increased oxidative protein damage. The absence of a correlation between reactive oxygen species levels and oxidative protein damage implies differences in damage prevention or correction. This was investigated by gene expression studies, which showed adaptive and compensating changes involving antioxidants and the unfolded protein response, especially in the POLG1 group. This study indicated that patients display individual responses and that detailed analysis of fibroblasts enables the identification of patients that potentially benefit from antioxidant therapy. Furthermore, the fibroblast model can also be used to search for and test novel, more specific antioxidants or explore ways to stimulate compensatory mechanisms.


Assuntos
Antioxidantes/uso terapêutico , Fibroblastos/metabolismo , Doenças Mitocondriais/tratamento farmacológico , Fosforilação Oxidativa , Estresse Oxidativo , Adolescente , Adulto , Linhagem Celular , Criança , Pré-Escolar , DNA Polimerase gama , DNA Mitocondrial/genética , DNA Polimerase Dirigida por DNA/genética , Feminino , Humanos , Lactente , Masculino , Doenças Mitocondriais/metabolismo , Mutação , RNA de Transferência de Leucina/genética , Espécies Reativas de Oxigênio/metabolismo
4.
Biochim Biophys Acta ; 1822(7): 1161-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22033105

RESUMO

Defective complex I (CI) is the most common type of oxidative phosphorylation disease, with an incidence of 1 in 5000 live births. Here, whole genome expression profiling of fibroblasts from CI deficient patients was performed to gain insight into the cell pathological mechanism. Our results suggest that patient fibroblasts responded to oxidative stress by Nrf2-mediated induction of the glutathione antioxidant system and Gadd45-mediated activation of the DNA damage response pathway. Furthermore, the observed reduced expression of selenoproteins, might explain the disturbed calcium homeostasis previously described for the patient fibroblasts and might be linked to endoplasmic reticulum stress. These results suggest that both glutathione and selenium metabolism are potentially therapeutic targets in CI deficiency.


Assuntos
Cálcio/metabolismo , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Redes e Vias Metabólicas/genética , Doenças Mitocondriais/genética , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pré-Escolar , Dano ao DNA , Estresse do Retículo Endoplasmático , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Glutationa/metabolismo , Homeostase/genética , Humanos , Lactente , Recém-Nascido , Masculino , Doenças Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo , Selenoproteínas/metabolismo
5.
Cell Mol Life Sci ; 64(24): 3271-81, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17968498

RESUMO

Refsum disease is a rare, inherited neurodegenerative disorder characterized by accumulation of the dietary branched-chain fatty acid phytanic acid in plasma and tissues caused by a defect in the alphaoxidation pathway. The accumulation of phytanic acid is believed to be the main pathophysiological cause of the disease. However, the exact mechanism(s) by which phytanic acid exerts its toxicity have not been resolved. In this study, the effect of phytanic acid on mitochondrial respiration was investigated. The results show that in digitonin-permeabilized fibroblasts, phytanic acid decreases ATP synthesis, whereas substrate oxidation per se is not affected. Importantly, studies in intact fibroblasts revealed that phytanic acid decreases both the mitochondrial membrane potential and NAD(P)H autofluorescence. Taken together, the results described here show that unesterified phytanic acid exerts its toxic effect mainly through its protonophoric action, at least in human skin fibroblasts.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ácido Fitânico/farmacologia , Prótons , 2,4-Dinitrofenol/farmacologia , Trifosfato de Adenosina/biossíntese , Respiração Celular/efeitos dos fármacos , Células Cultivadas , Complexo II de Transporte de Elétrons/efeitos dos fármacos , Complexo II de Transporte de Elétrons/metabolismo , Fluorescência , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/ultraestrutura , NADP/química , Rotenona/farmacologia , Desacopladores/farmacologia
7.
Gen Comp Endocrinol ; 127(1): 80-8, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12161205

RESUMO

TRH is a neuropeptide that activates phospholipase C and, when acting on secretory cells, usually induces a biphasic response consisting of a transitory increase in secretion (due to IP(3) mobilization of Ca(2+) from intracellular stores), followed by a sustained plateau phase of stimulated secretion (by protein kinase C-dependent influx of extracellular Ca(2+) through voltage-operated Ca(2+) channels). The melanotrope cell of the amphibian Xenopus laevis displays a unique secretory response to TRH, namely a broad transient but no sustained second phase, consistent with the observation that TRH induces a single Ca(2+) transient rather than the classic biphasic increase in [Ca(2+)](i). The purpose of the present study was to determine the signal transduction mechanism utilized by TRH in generating this Ca(2+) signaling response. Our hypothesis was that the transient reflects the operation of only one of the two signaling arms of the lipase (i.e., either IP(3)-induced mobilization of internal Ca(2+) or PKC-dependent influx of external Ca(2+)). Using video-imaging microscopy it is shown that the TRH-induced Ca(2+) transient is dramatically attenuated under Ca(2+)-free conditions and that thapsigargin has no noticeable effect on the TRH-induced transient. These observations indicate that an IP(3)-dependent mechanism plays no important role in the action of TRH. PKC also does not seem to be involved because an activator of PKC did not induce a Ca(2+) transient and an inhibitor of PKC did not affect the TRH response. Experiments with a bis-oxonol membrane potential probe showed that the TRH response also does not underlie a PKC-independent mechanism that would induce membrane depolarization. We conclude that the action of TRH on the Xenopus melanotrope does not rely on the classical phospholipase C-dependent mechanism.


Assuntos
Hormônios Estimuladores de Melanócitos/metabolismo , Hipófise/metabolismo , Transdução de Sinais , Hormônio Liberador de Tireotropina/farmacologia , Xenopus laevis/fisiologia , Animais , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Ácido Egtázico/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Piperidinas/farmacologia , Hipófise/efeitos dos fármacos , Hipófise/ultraestrutura , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Tapsigargina/farmacologia
8.
Pflugers Arch ; 442(6): 910-9, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11680625

RESUMO

Evidence for the presence of a regulated phospholipase D (PLD) activity in pancreatic acinar cells is conflicting. Such knowledge is important because signal-activated PLD has been implicated in, amongst other things, regulated exocytosis. In this study, freshly isolated rat pancreatic acini were used to identify PLD transcripts by RT-PCR, to assess the presence and subcellular localization of PLD protein by Western blotting and to evaluate the presence of secretagogue-regulated PLD activity by means of the PLD-catalysed transphosphatidylation reaction. Transcripts of PLD1b and PLD2, but not PLD1a, were present in acinar cells. Moreover, a specific anti-human PLD1 antibody demonstrated the expression of substantial amounts of PLD1 protein. Intriguingly, however, the distribution pattern of acinar PLD1 seen following subcellular fractionation was clearly atypical in that immunoreactivity occurred predominantly in the acinar cytosol. Pretreatment of intact acini with a phorbol ester (4beta-phorbol 12-myristate 13-acetate, PMA) to activate PLD1 protein kinase C (PKC) dependently did not change the subcellular distribution of PLD1. Similarly, pretreatment of a broken cell preparation of acini with guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) to activate PLD via small GTPases and PMA also did not influence this distribution. In the presence of ethanol, cholecystokinin-(26-33)-peptide amide (CCK8) did not increase the amount of radiolabelled phosphatidylethanol (PtdEth) in intact acini prelabelled with either o-[32P]phosphate or [3H]myristic acid. Similarly, an increased cytosolic Ca2+ concentration evoked by the specific inhibitor of the endoplasmic reticulum Ca2+-ATPase, thapsigargin, did not stimulate acinar PLD activity whereas high-level PKC activation with PMA elicited slight stimulation. In contrast, all three stimuli are known to increase PLD activity readily in Chinese hamster ovary (CHO) cells expressing the rat pancreatic acinar cell CCKA receptor. Finally, the combination of PMA and GTPgammaS did not increase PLD activity following homologous reconstitution of acinar cytosol and membranes, whereas the same manoeuvre resulted in marked stimulation of PLD activity in CHO cells. Heterologous reconstitution experiments revealed that PLD activity in CHO membranes was stimulated readily in the presence of acinar cytosol, indicating that the acinar cytosol contains the necessary factors for PMA/GTPgammaS-induced stimulation of membrane PLD activity. In contrast, CHO cell cytosol did not confer PMA/GTPgammaS-stimulation of PLD activity on acinar membranes, in agreement with the predominantly cytosolic localization of acinar PLD. The present findings show that rat pancreatic acinar cells express a cytosolic PLD1 isoform that is not regulated by the physiologically important secretagogue CCK.


Assuntos
Colecistocinina/farmacologia , Citosol/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Isoenzimas/genética , Pâncreas/enzimologia , Fosfolipase D/genética , Animais , Western Blotting , Células CHO , Cálcio/metabolismo , Fracionamento Celular , Cricetinae , Ativação Enzimática/efeitos dos fármacos , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Pâncreas/ultraestrutura , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositóis/metabolismo , Proteína Quinase C/metabolismo , RNA Mensageiro/análise , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sincalida/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Tapsigargina/farmacologia , Trítio
9.
J Biol Chem ; 276(40): 36909-16, 2001 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-11470785

RESUMO

Several mutations of residues Glu(795) and Glu(820) present in M5 and M6 of the catalytic subunit of gastric H(+),K(+)-ATPase have resulted in a K(+)-independent, SCH 28080-sensitive ATPase activity, caused by a high spontaneous dephosphorylation rate. The mutants with this property also have a preference for the E(1) conformation. This paper investigates the question of whether these two phenomena are coupled. This possibility was studied by combining mutations in residue Glu(343), present in M4, with those in residues 795 and 820. When in combined mutants Glu and/or Gln residues were present at positions 343, 795, and 820, the residue at position 820 dominated the behavior: a Glu giving K(+)-activated ATPase activity and an E(2) preference and a Gln giving K(+)-independent ATPase activity and an E(1) preference. With an Asp at position 343, the enzyme could be phosphorylated, but the dephosphorylation was blocked, independent of the presence of either a Glu or a Gln at positions 795 and 820. However, in these mutants, the direction of the E(2) <--> E(1) equilibrium was still dominated by the 820 residue: a Glu giving E(2) and a Gln giving E(1). This indicates that the preference for the E(1) conformation of the E820Q mutation is independent of an active dephosphorylation process.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Potássio/metabolismo , Estômago/enzimologia , Animais , Células Cultivadas , Ácido Glutâmico/genética , ATPase Trocadora de Hidrogênio-Potássio/química , ATPase Trocadora de Hidrogênio-Potássio/genética , Insetos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Fosforilação/efeitos dos fármacos , Conformação Proteica , Ratos , Vanadatos/farmacologia
10.
Biophys J ; 81(1): 57-65, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11423394

RESUMO

An important aspect of Ca(2+) signaling is the ability of cells to generate intracellular Ca(2+) waves. In this study we have analyzed the cellular and subcellular kinetics of Ca(2+) waves in a neuroendocrine transducer cell, the melanotrope of Xenopus laevis, using the ratiometric Ca(2+) probe indo-1 and video-rate UV confocal laser-scanning microscopy. The purpose of the present study was to investigate how local Ca(2+) changes contribute to a global Ca(2+) signal; subsequently we quantified how a Ca(2+) wave is kinetically reshaped as it is propagated through the cell. The combined kinetics of all subcellular Ca(2+) signals determined the shape of the total cellular Ca(2+) signal, but each subcellular contribution to the cellular signal was not constant in time. Near the plasma membrane, [Ca(2+)](i) increased and decreased rapidly, processes that can be described by a linear and exponential function, respectively. In more central parts of the cell slower kinetics were observed that were best described by a Hill equation. This reshaping of the Ca(2+) wave was modeled with an equation derived from a low-pass RC filter. We propose that the differences in spatial kinetics of the Ca(2+) signal serves as a mechanism by which the same cellular Ca(2+) signal carries different regulatory information to different subcellular regions of the cell, thus evoking differential cellular responses.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Eritrócitos/metabolismo , Líquido Intracelular/metabolismo , Animais , Calibragem , Eletroquímica , Eritrócitos/citologia , Imageamento Tridimensional , Cinética , Modelos Biológicos , Xenopus laevis
11.
Biochim Biophys Acta ; 1538(2-3): 329-38, 2001 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-11336804

RESUMO

Phospholipase D (PLD) is distributed widely in mammalian tissues where it is believed to play an important role in the regulation of cell functions and cell fate by a variety of extracellular signals. In this study, we used primary cultures of rabbit connecting tubule (CNT) and cortical collecting duct (CCD) cells, grown to confluence on a permeable support, to investigate the possible involvement of PLD in the mechanism of action of hormones that regulate Ca(2+) reabsorption. RT-PCR revealed the presence of transcripts of PLD1b and PLD2, but not PLD1a, in these cultures. Moreover, the expression of substantial amounts of PLD1 protein was demonstrated by Western blotting. To measure PLD activity, cells were labelled with [(3)H]myristic acid after which the PLD-catalysed formation of radiolabelled phosphatidylethanol ([(3)H]PtdEth) was measured in the presence of 1% (v/v) ethanol. Deamino-Cys,D-Arg(8)-vasopressin (dDAVP) and N(6)-cyclopentyladenosine (CPA), two potent stimulators of Ca(2+) transport across these monolayers, stimulated PLD activity as was indicated by a marked increase in [(3)H]PtdEth. Similarly, ATP, a potent inhibitor of dDAVP- and CPA-stimulated Ca(2+) transport, increased the formation of [(3)H]PtdEth. PLD activity was furthermore increased by 8Br-cAMP and following acute (30 min) stimulation of protein kinase C (PKC) with a phorbol ester (PMA). Chronic PMA treatment (120 h) to downregulate phorbol ester-sensitive PKC isoforms did not affect PLD activation by dDAVP, CPA and 8Br-cAMP, while markedly decreasing the effect of ATP and abolishing the effect of PMA. The PKC inhibitor chelerythrine significantly reduced PLD activation by dDAVP, CPA and 8Br-cAMP, without changing the effect of ATP. The inhibitor only partially reduced the effect of PMA. This study shows that Ca(2+) transporting cells of CNT and CCD contain a regulated PLD activity. The physiological relevance of this activity, which is not involved in Ca(2+) reabsorption, remains to be established.


Assuntos
Cálcio/metabolismo , Hormônios/farmacologia , Túbulos Renais Coletores/enzimologia , Fosfolipase D/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Transporte Biológico , Cátions Bivalentes , Células Cultivadas , Desamino Arginina Vasopressina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Glicerofosfolipídeos/análise , Isoenzimas/metabolismo , Modelos Químicos , Coelhos , Acetato de Tetradecanoilforbol/farmacologia , Trítio
12.
Biochemistry ; 40(21): 6527-33, 2001 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-11371216

RESUMO

Six double mutants of Glu(795) and Glu(820) present in transmembrane domains 5 and 6 of the alpha-subunit of rat gastric H(+),K(+)-ATPase were generated and expressed with the baculovirus expression system. Five of the six mutants exhibited an SCH 28080-sensitive ATPase activity in the absence of K(+). The activity levels decreased in the following order: E795Q/E820A > E795Q/E820Q > E795Q/E820D congruent with E795A/E820A > E795L/E820Q. The E795L/E820D mutant possessed no constitutive activity. The relative low ATPase activity of the E795L/E820Q mutant is due to its low phosphorylation rate so that the dephosphorylation step was no longer rate-limiting. The constitutively active mutants showed a much lower vanadate sensitivity than the wild-type enzyme and K(+)-sensitive mutants, indicating that these mutants have a preference for the E(1) conformation. In contrast to the constitutively active single mutants generated previously, the double mutants exhibited a high spontaneous dephosphorylation rate at 0 degrees C compared to that of the wild-type enzyme. In addition, the H(+),K(+)-ATPase inhibitor SCH 28080 increased the steady-state phosphorylation level of the constitutively active mutants, due to the formation of a stable complex with the E(2)-P form. These studies further substantiate the idea that the empty ion binding pockets of some mutants apparently mimic the K(+)-filled binding pocket of the native enzyme.


Assuntos
Substituição de Aminoácidos/genética , Ácido Glutâmico/genética , ATPase Trocadora de Hidrogênio-Potássio/genética , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Mutagênese Sítio-Dirigida , Potássio/metabolismo , Estômago/enzimologia , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Baculoviridae/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Inibidores Enzimáticos/farmacologia , Hidroxilamina/farmacologia , Imidazóis/farmacologia , Fosforilação/efeitos dos fármacos , Inibidores da Bomba de Prótons , Ratos , Spodoptera/enzimologia , Spodoptera/genética
13.
J Biol Chem ; 276(15): 11705-11, 2001 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-11278751

RESUMO

In this study we reveal regions of Na(+),K(+)-ATPase and H(+),K(+)-ATPase that are involved in cation selectivity. A chimeric enzyme in which transmembrane hairpin M5-M6 of H(+),K(+)-ATPase was replaced by that of Na(+),K(+)-ATPase was phosphorylated in the absence of Na(+) and showed no K(+)-dependent reactions. Next, the part originating from Na(+),K(+)-ATPase was gradually increased in the N-terminal direction. We demonstrate that chimera HN16, containing the transmembrane segments one to six and intermediate loops of Na(+),K(+)-ATPase, harbors the amino acids responsible for Na(+) specificity. Compared with Na(+),K(+)-ATPase, this chimera displayed a similar apparent Na(+) affinity, a lower apparent K(+) affinity, a higher apparent ATP affinity, and a lower apparent vanadate affinity in the ATPase reaction. This indicates that the E(2)K form of this chimera is less stable than that of Na(+),K(+)-ATPase, suggesting that it, like H(+),K(+)-ATPase, de-occludes K(+) ions very rapidly. Comparison of the structures of these chimeras with those of the parent enzymes suggests that the C-terminal 187 amino acids and the beta-subunit are involved in K(+) occlusion. Accordingly, chimera HN16 is not only a chimeric enzyme in structure, but also in function. On one hand it possesses the Na(+)-stimulated ATPase reaction of Na(+),K(+)-ATPase, while on the other hand it has the K(+) occlusion properties of H(+),K(+)-ATPase.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , ATPase Trocadora de Hidrogênio-Potássio/química , Fosforilação , Potássio/metabolismo , Ratos , Proteínas Recombinantes de Fusão/química , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/química
14.
Free Radic Biol Med ; 29(8): 747-55, 2000 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11053776

RESUMO

Polymorphonuclear leukocytes (PMN) have been suggested to play a role in atherosclerosis, but intracellular signaling after stimulation with oxidized low-density lipoprotein (LDL) is unknown. We investigated mechanistic aspects of oxidized LDL-induced superoxide production by human PMN, with special emphasis on intracellular Ca(2+) concentration ([Ca(2+)](i)). Oxidized LDL, but not native LDL, evoked an early but sustained increase in [Ca(2+)](i) and a delayed production of superoxide. The increase in [Ca(2+)](i) could be reduced by fucoidan and completely prevented by U73122, suggesting involvement of the scavenger receptor and coupling to the phospholipase C signal transduction pathway. Furthermore, we provide evidence that the increase in [Ca(2+)](i) partly results from protein kinase C-dependent Ca(2+) influx. The relevance of this Ca(2+) entry for oxidized LDL-stimulated effects is illustrated by the finding that superoxide production was markedly reduced in the absence of external Ca(2+). Finally, inhibition of phagocytosis by cytochalasin B abolished oxidized LDL-stimulated superoxide production without affecting, however, the Ca(2+) mobilization. These effects of oxidized LDL on [Ca(2+)](i) and on respiratory burst of PMN may underlie the occurrence of elevated levels of [Ca(2+)](i) of resting PMN in hypercholesterolemia and represent a mechanism by which PMN can amplify processes in the early phase of atherosclerosis.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Arteriosclerose/etiologia , Arteriosclerose/metabolismo , Humanos , Técnicas In Vitro , Lipoproteínas LDL/metabolismo , Medições Luminescentes , Modelos Biológicos , Oxirredução , Superóxidos/metabolismo
15.
Proc Natl Acad Sci U S A ; 97(21): 11209-14, 2000 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-11016952

RESUMO

Na(+),K(+)-ATPase and gastric H(+),K(+)-ATPase are two related enzymes that are responsible for active cation transport. Na(+), K(+)-ATPase activity is inhibited specifically by ouabain, whereas H(+),K(+)-ATPase is insensitive to this drug. Because it is not known which parts of the catalytic subunit of Na(+),K(+)-ATPase are responsible for ouabain binding, we prepared chimeras in which small parts of the alpha-subunit of H(+),K(+)-ATPase were replaced by their counterparts of the alpha(1)-subunit of rat Na(+),K(+)-ATPase. A chimeric enzyme in which transmembrane segments 5 and 6 of H(+), K(+)-ATPase were replaced by those of Na(+),K(+)-ATPase could form a phosphorylated intermediate, but hardly showed a K(+)-stimulated dephosphorylation reaction. When transmembrane segments 3 and 4 of Na(+),K(+)-ATPase were also included in this chimeric ATPase, K(+)-stimulated dephosphorylation became apparent. This suggests that there is a direct interaction between the hairpins M3-M4 and M5-M6. Remarkably, this chimeric enzyme, HN34/56, had obtained a high-affinity ouabain-binding site, whereas the rat Na(+), K(+)-ATPase, from which the hairpins originate, has a low affinity for ouabain. The low affinity of the rat Na(+),K(+)-ATPase previously had been attributed to the presence of two charged amino acids in the extracellular domain between M1 and M2. In the HN34/56 chimera, the M1/M2 loop, however, originates from H(+),K(+)-ATPase, which has two polar uncharged amino acids on this position. Placement of two charged amino acids in the M1/M2 loop of chimera HN34/56 results in a decreased ouabain affinity. This indicates that although the M1/M2 loop affects the ouabain affinity, binding occurs when the M3/M4 and M5/M6 hairpins of Na(+),K(+)-ATPase are present.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Ouabaína/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Estômago/enzimologia , Animais , Membrana Celular/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/genética , Ligação Proteica , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
16.
Biochemistry ; 39(32): 9959-66, 2000 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10933816

RESUMO

A series of six different mutants (D804A, D804E, D804G, D804N, D804Q, and D804S) of aspartate 804 present in transmembrane segment 6 of the rat Na(+),K(+)-ATPase alpha(1)-subunit were prepared and expressed in Sf9 cells by use of the baculovirus expression system. In contrast to the wild-type enzyme all mutants except D804Q showed a very high Na(+)-ATPase activity, which was hardly further stimulated by the addition of K(+). The ATPase activity of the mutants was already nearly maximal at 10 microM ATP and most of them could be phosphorylated in the absence of Na(+) at pH 6.0 and 21 degrees C, suggesting that they strongly prefer the E(1) over the E(2) conformation. However, Na(+) dose-dependently lowered the steady-state phosphorylation level, as a consequence of the increased affinity for Na(+) in the dephosphorylation reaction of the mutants compared to the wild-type enzyme. Conversely, the affinity for K(+) in the dephosphorylation reaction was decreased for the mutants as compared to that for the wild-type enzyme. When the pH was increased or the temperature was decreased, the phosphorylation level of the mutants decreased and the Na(+) activation in the phosphorylation reaction became apparent. It is concluded that upon mutation of aspartate 804 the affinity of the cation-binding pocket is changed relatively in favor of Na(+) instead of K(+), as a consequence of which the enzyme has obtained a preference for the E(1) conformation.


Assuntos
Ácido Aspártico/genética , Proteínas de Transporte de Cátions , Mutação , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Baculoviridae , Sítios de Ligação , Cátions Monovalentes/metabolismo , Modelos Químicos , Mutagênese Sítio-Dirigida , Ouabaína/farmacologia , Fosforilação , Conformação Proteica , Ratos , Proteínas Recombinantes/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Spodoptera/citologia , Spodoptera/virologia
17.
Br J Pharmacol ; 131(1): 57-62, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10960069

RESUMO

The anionic drug probenecid has been traditionally used as an inhibitor of renal organic anion transport. More recently the drug was found to inhibit organic cation transport as well, and it is used to retain intracellularly loaded fluorophores. In these investigations it is implicitly assumed that probenecid performs its activity through competition for transport. Here we studied the possibility that probenecid provokes its effect through inhibition of cellular oxidative metabolism. Oxygen consumption was measured in isolated rat kidney cortex mitochondria. At concentrations of 1 mM or higher, probenecid increased the resting state (state 4) and decreased the ADP-stimulated respiration (state 3). A complete loss in respiratory control was observed at 10 mM probenecid. After incubating isolated rat kidney proximal tubular cells (PTC) for 30 min with probenecid a concentration-dependent reduction in ATP content was observed, which was significant at concentrations of 1 mM and higher. Using digital image fluorescence microscopy the membrane potential in PTC was measured with bisoxonol. The mitochondrial effects of probenecid were paralleled by a depolarization of the plasma membrane, immediately after drug addition. All events are likely to be a result of membrane disordering due to the lipophilic character of probenecid, and may explain, at least in part, the various inhibitory effects found for the drug. We recommend to be cautious with applying probenecid in cellular research.


Assuntos
Rim/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Probenecid/farmacologia , Uricosúricos/farmacologia , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Cálcio/metabolismo , Rim/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar
18.
Am J Physiol Renal Physiol ; 278(3): F352-60, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10710538

RESUMO

The fine tuning of Ca(2+) excretion in the kidney takes place in the distal nephron, which consists of the distal convoluted tubule, connecting tubule, and initial portion of the cortical collecting duct. In these segments, Ca(2+) is reabsorbed through an active transcellular pathway. The apical influx of Ca(2+) into the distal renal cell is presumably the rate-limiting step in this process, and its molecular identity has remained obscure so far. The recently discovered epithelial Ca(2+) channel (ECaC) exhibits the expected properties for being the gatekeeper in transcellular Ca(2+) reabsorption. The characteristics and potential physiological role of ECaC will be discussed in this review. Our knowledge of the mechanisms involved in the regulation of transcellular Ca(2+) transport has advanced rapidly since the development of cell models originating from distal tubular cells. Studies using these models indicate that hormones including arginine vasopressin, PGE(2), adenosine, ATP, and atrial natriuretic peptide should be considered as calciotropic hormones controlling renal Ca(2+) handling. Evidence is now beginning to emerge that the stimulating calciotropic hormones utilize new cAMP-independent pathways to stimulate Ca(2+) reabsorption. These new findings allow the development of a comprehensive and detailed model of the process of transcellular calcium transport in the kidney whereby the individual contribution of the participating transporters can now be fully appreciated.


Assuntos
Cálcio/metabolismo , Modelos Moleculares , Absorção , Sequência de Aminoácidos/genética , Animais , Proteínas de Transporte/metabolismo , Canais Epiteliais de Sódio , Hormônios/fisiologia , Humanos , Dados de Sequência Molecular , Canais de Sódio/genética
19.
J Biol Chem ; 275(6): 3963-9, 2000 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-10660551

RESUMO

The recently cloned epithelial Ca(2+) channel (ECaC) constitutes the Ca(2+) influx pathway in 1,25-dihydroxyvitamin D(3)-responsive epithelia. We have combined patch-clamp analysis and fura-2 fluorescence microscopy to functionally characterize ECaC heterologously expressed in HEK293 cells. The intracellular Ca(2+) concentration in ECaC-expressing cells was closely correlated with the applied electrochemical Ca(2+) gradient, demonstrating the distinctive Ca(2+) permeability and constitutive activation of ECaC. Cells dialyzed with 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid displayed large inward currents through ECaC in response to voltage ramps. The corresponding current-voltage relationship showed pronounced inward rectification. Currents evoked by voltage steps to potentials below -40 mV partially inactivated with a biexponential time course. This inactivation was less pronounced if Ba(2+) or Sr(2+) replaced Ca(2+) and was absent in Ca(2+)-free solutions. ECaC showed an anomalous mole fraction behavior. The permeability ratio P(Ca):P(Na) calculated from the reversal potential at 30 mM [Ca(2+)](o) was larger than 100. The divalent cation selectivity profile is Ca(2+) > Mn(2+) > Ba(2+) approximately Sr(2+). Repetitive stimulation of ECaC-expressing cells induced a decay of the current response, which was greatly reduced if Ca(2+) was replaced by Ba(2+) and was virtually abolished if [Ca(2+)](o) was lowered to 1 nM. In conclusion, ECaC is a Ca(2+) selective channel, exhibiting Ca(2+)-dependent autoregulatory mechanisms, including fast inactivation and slow down-regulation.


Assuntos
Canais de Cálcio/metabolismo , Ativação do Canal Iônico/fisiologia , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Linhagem Celular , Quelantes/farmacologia , Fura-2 , Humanos , Microscopia de Fluorescência , Técnicas de Patch-Clamp , Canais de Cátion TRPV
20.
Biol Reprod ; 62(3): 731-8, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10684817

RESUMO

In the brain of all vertebrate classes, chicken (c) GnRH-II ([His(5), Trp(7),Tyr(8)]GnRH, cGnRH-II) is expressed in the mesencephalon. In addition, at least one other form of GnRH is expressed in the preoptical area/hypothalamus. In the human pituitary stalk and the mouse median eminence, cGnRH-II is present together with mammalian GnRH. Similarly, in the pituitary of several teleost fish (e.g., goldfish and eel, but not salmon or trout), a teleost GnRH is found together with cGnRH-II. These GnRHs are not colocalized in the same cells. Hence, these GnRH peptides may differentially regulate gonadotropin secretion and, in addition, may exert their effects simultaneously. The current study therefore investigated the effects of combinations of the two forms of GnRH present in the African catfish (Clarias gariepinus) pituitary-cGnRH-II and catfish GnRH ([His(5),Asn(8)]GnRH, cfGnRH)-on the cytosolic free calcium concentration ([Ca(2+)](i)) in single, Fura-2-loaded catfish gonadotrophs, as well as their effects on both in vitro and in vivo LH secretion. Both inhibitory and stimulatory effects of combinations of cfGnRH and cGnRH-II on [Ca(2+)](i) were observed, which were mirrored by their effects on both in vitro and in vivo LH secretion. The following pattern became apparent. The effect of intermediate or maximal effective cfGnRH doses was inhibited by the simultaneous presence of subthreshold or borderline effective cGnRH-II doses. Conversely, subthreshold or borderline effective concentrations of cfGnRH enhanced the effects of intermediate and maximal concentrations of cGnRH-II. In addition, combinations of cfGnRH and cGnRH-II concentrations that were equally active when tested separately showed an additive effect. The observed interactions between the two GnRHs may be of particular physiological relevance in the control of seasonal LH levels in the African catfish, as well as in other teleost species. Moreover, the occurrence of mutual inhibitory and stimulatory interactions between endogenous GnRHs may be a widespread aspect of GnRH action in vertebrates.


Assuntos
Peixes-Gato/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hipófise/metabolismo , Animais , Sinalização do Cálcio , Células Cultivadas , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Luteinizante/metabolismo , Hipófise/citologia , Hipófise/efeitos dos fármacos , Receptores LHRH/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...