Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L125-L134, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084404

RESUMO

Cystic fibrosis-related diabetes (CFRD) affects 40%-50% of adults with CF and is associated with a decline in respiratory health. The microbial flora of the lung is known to change with the development of CF disease, but how CFRD affects the microbiome has not been described. We analyzed the microbiome in sputa from 14 people with CF, 14 with CFRD, and two who were classed as pre-CFRD by extracting DNA and amplifying the variable V3-V4 region of the microbial 16S ribosomal RNA gene by PCR. Sequences were analyzed and sources were identified to genus level. We found that the α-diversity of the microbiome using Shannon's diversity index was increased in CFRD compared with CF. Bray Curtis dissimilarity analysis showed that there was separation of the microbiomes in CF and CFRD sputa. The most abundant phyla identified in the sputum samples were Firmicutes and Proteobacteria, Actinobacteriota and Bacteroidota, and the ratio of Firmicutes/Bacteroidota was reduced in CFRD compared with CF. Pseudomonas, Azhorizophilus, Porphyromonas, and Actinobacillus were more abundant in CFRD compared with CF, whereas Staphylococcus was less abundant. The relative abundance of these genera did not correlate with age; some correlated with a decline in FEV1/FVC but all correlated with hemoglobin A1C (HbA1c) indicating that development of CFRD mediates further changes to the respiratory microbiome in CF.NEW & NOTEWORTHY Cystic fibrosis-related diabetes (CFRD) is associated with a decline in respiratory health. We show for the first time that there was a change in the sputum microbiome of people with CFRD compared with CF that correlated with markers of raised blood glucose.


Assuntos
Fibrose Cística , Diabetes Mellitus , Microbiota , Adulto , Humanos , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Escarro , Pulmão/microbiologia
2.
PLOS Glob Public Health ; 3(10): e0002283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37851685

RESUMO

Bedaquiline (B), pretomanid (Pa) and linezolid (L) are key components of new regimens for treating rifampicin-resistant tuberculosis (TB). However, there is limited information on the global prevalence of resistance to these drugs and the impact of resistance on treatment outcomes. Mycobacterium tuberculosis (MTB) phenotypic drug susceptibility and whole-genome sequence (WGS) data, as well as patient profiles from 4 pretomanid-containing trials-STAND, Nix-TB, ZeNix and SimpliciTB-were used to investigate the rates of baseline resistance (BR) and acquired resistance (AR) to BPaL drugs, as well as their genetic basis, risk factors and impact on treatment outcomes. Data from >1,000 TB patients enrolled from 2015 to 2020 in 12 countries was assessed. We identified 2 (0.3%) participants with linezolid BR. Pretomanid BR was also rare, with similar rates across TB drug resistance types (0-2.1%). In contrast, bedaquiline BR was more prevalent among participants with highly resistant TB or longer prior treatment histories than those with newly diagnosed disease (5.2-6.3% vs. 0-0.3%). Bedaquiline BR was a risk factor for bacteriological failure or relapse in Nix-TB/ZeNix; 3/12 (25%, 95% CI 5-57%) participants with vs. 6/185 (3.2%, 1.2-6.9%) without bedaquiline BR. Across trials, we observed no linezolid AR, and only 3 cases of bedaquiline AR, including 2 participants with poor adherence. Overall, pretomanid AR was also rare, except in ZeNix patients with bedaquiline BR. WGS analyses revealed novel mutations in canonical resistant genes and, in 7 MTB isolates, the genetic determinants could not be identified. The overall low rates of BR to linezolid and pretomanid, and to a lesser extent to bedaquiline, observed in the pretomanid trials are in support of the worldwide implementation of BPaL-based regimens. Similarly, the overall low AR rates observed suggest BPaL drugs are better protected in the regimens trialed here than in other regimens combining bedaquiline with more, but less effective drugs.

3.
Microb Genom ; 9(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526642

RESUMO

The bacillus Calmette-Guérin (BCG) vaccine has been in use for prevention of tuberculosis for over a century. It remains the only widely available tuberculosis vaccine and its protective efficacy has varied across geographical regions. Since it was developed, the BCG vaccine strain has been shared across different laboratories around the world, where use of differing culture methods has resulted in genetically distinct strains over time. Whilst differing BCG vaccine efficacy around the world is well documented, and the reasons for this may be multifactorial, it has been hypothesized that genetic differences in BCG vaccine strains contribute to this variation. Isolates from an historic archive of lyophilized BCG strains were regrown, DNA was extracted and then whole-genome sequenced using Oxford Nanopore Technologies. The resulting whole-genome data were plotted on a phylogenetic tree and analysed to identify the presence or absence of regions of difference (RDs) and single-nucleotide polymorphisms (SNPs) relating to virulence, growth and cell wall structure. Of 50 strains available, 36 were revived in culture and 39 were sequenced. Morphology differed between the strains distributed before and after 1934. There was phylogenetic association amongst certain geographically classified strains, most notably BCG-Russia, BCG-Japan and BCG-Danish. RD2, RD171 and RD713 deletions were associated with late strains (seeded after 1927). When mapped to BCG-Pasteur 1172, the SNPs in sigK, plaA, mmaA3 and eccC5 were associated with early strains. Whilst BCG-Russia, BCG-Japan and BCG-Danish showed strong geographical isolate clustering, the late strains, including BCG-Pasteur, showed more variation. A wide range of SNPs were seen within geographically classified strains, and as much intra-strain variation as between-strain variation was seen. The date of distribution from the original Pasteur laboratory (early pre-1927 or late post-1927) gave the strongest association with genetic differences in regions of difference and virulence-related SNPs, which agrees with the previous literature.


Assuntos
Mycobacterium bovis , Tuberculose , Humanos , Vacina BCG/genética , Filogenia , Tuberculose/prevenção & controle , Sequência de Bases
4.
J Infect Dis ; 228(9): 1179-1188, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37216766

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global health challenge. Limitations to AMR surveillance reporting, alongside reduction in culture-based susceptibility testing, has resulted in a need for rapid diagnostics and strain detection. We investigated Nanopore sequencing time, and depth, to accurately identify closely related N. gonorrhoeae isolates, compared to Illumina sequencing. METHODS: N. gonorrhoeae strains collected from a London sexual health clinic were cultured and sequenced with MiSeq and MinION sequencing platforms. Accuracy was determined by comparing variant calls at 68 nucleotide positions (37 resistance-associated markers). Accuracy at varying MinION sequencing depths was determined through retrospective time-stamped read analysis. RESULTS: Of 22 MinION-MiSeq pairs reaching sufficient sequencing depth, agreement of variant call positions passing quality control criteria was 185/185 (100%; 95% confidence interval [CI], 98.0%-100.0%), 502/503 (99.8%; 95% CI, 98.9%-99.9%), and 564/565 (99.8%; 95% CI, 99.0%-100.0%) at 10x, 30x, and 40x MinION depth, respectively. Isolates identified as closely related by MiSeq, within one yearly evolutionary distance of ≤5 single nucleotide polymorphisms, were accurately identified via MinION. CONCLUSIONS: Nanopore sequencing shows utility as a rapid surveillance tool, identifying closely related N. gonorrhoeae strains, with just 10x sequencing depth, taking a median time of 29 minutes. This highlights its potential for tracking local transmission and AMR markers.


Assuntos
Gonorreia , Nanoporos , Humanos , Neisseria gonorrhoeae/genética , Filogenia , Estudos Retrospectivos , Sequenciamento Completo do Genoma/métodos , Gonorreia/diagnóstico , Gonorreia/epidemiologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana , Antibacterianos/farmacologia
5.
Clin Microbiol Infect ; 29(9): 1166-1173, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37207981

RESUMO

OBJECTIVES: Methicillin-resistant Staphylococcus aureus (MRSA) infections impose a considerable burden on health systems, yet there is remarkable variation in the global incidence and epidemiology of MRSA. The MACOTRA consortium aimed to identify bacterial markers of epidemic success of MRSA isolates in Europe using a representative MRSA collection originating from France, the Netherlands and the United Kingdom. METHODS: Operational definitions of success were defined in consortium meetings to compose a balanced strain collection of successful and sporadic MRSA isolates. Isolates were subjected to antimicrobial susceptibility testing and whole-genome sequencing; genes were identified and phylogenetic trees constructed. Markers of epidemiological success were identified using genome-based time-scaled haplotypic density analysis and linear regression. Antimicrobial usage data from ESAC-Net was compared with national MRSA incidence data. RESULTS: Heterogeneity of MRSA isolate collections across countries hampered the use of a unified operational definition of success; therefore, country-specific approaches were used to establish the MACOTRA strain collection. Phenotypic antimicrobial resistance varied within related MRSA populations and across countries. In time-scaled haplotypic density analysis, fluoroquinolone, macrolide and mupirocin resistance were associated with MRSA success, whereas gentamicin, rifampicin and trimethoprim resistance were associated with sporadicity. Usage of antimicrobials across 29 European countries varied substantially, and ß-lactam, fluoroquinolone, macrolide and aminoglycoside use correlated with MRSA incidence. DISCUSSION: Our results are the strongest yet to associate MRSA antibiotic resistance profiles and antibiotic usage with the incidence of infection and successful clonal spread, which varied by country. Harmonized isolate collection, typing, resistance profiling and alignment with antimicrobial usage over time will aid comparisons and further support country-specific interventions to reduce MRSA burden.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Filogenia , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fluoroquinolonas , Testes de Sensibilidade Microbiana
6.
JAC Antimicrob Resist ; 5(3): dlad056, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37193005

RESUMO

Background: WGS has significant potential to help tackle the major public health problem of TB. The Republic of Korea has the third highest rates of TB of all Organisation for Economic Cooperation and Development countries but there has been very limited use of WGS in TB to date. Objectives: A retrospective comparison of Mycobacterium tuberculosis (MTB) clinical isolates from 2015 to 2017 from two centres in the Republic of Korea using WGS to compare phenotypic drug susceptibility testing (pDST) and WGS drug susceptibility predictions (WGS-DSP). Methods: Fifty-seven MTB isolates had DNA extracted and were sequenced using the Illumina HiSeq platform. The WGS analysis was performed using bwa mem, bcftools and IQ-Tree; resistance markers were identified using TB profiler. Phenotypic susceptibilities were carried out at the Supranational TB reference laboratory (Korean Institute of Tuberculosis). Results: For first-line antituberculous drugs concordance for rifampicin, isoniazid, pyrazinamide and ethambutol was 98.25%, 92.98%, 87.72% and 85.96%, respectively. The sensitivity of WGS-DSP compared with pDST for rifampicin, isoniazid, pyrazinamide and ethambutol was 97.30%, 92.11%, 78.95% and 95.65%, respectively. The specificity for these first-line antituberculous drugs was 100%, 94.74%, 92.11% and 79.41%, respectively. The sensitivity and specificity for second-line drugs ranged from 66.67% to 100%, and from 82.98% to 100%, respectively. Conclusions: This study confirms the potential role for WGS in drug susceptibility prediction, which would reduce turnaround times. However, further larger studies are needed to ensure current databases of drug resistance mutations are reflective of the TB present in the Republic of Korea.

7.
J Virol ; 97(3): e0184622, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916924

RESUMO

Cellular antiviral factors that recognize viral nucleic acid can inhibit virus replication. These include the zinc finger antiviral protein (ZAP), which recognizes high CpG dinucleotide content in viral RNA. Here, we investigated the ability of ZAP to inhibit the replication of human cytomegalovirus (HCMV). Depletion of ZAP or its cofactor KHNYN increased the titer of the high-passage HCMV strain AD169 but had little effect on the titer of the low-passage strain Merlin. We found no obvious difference in expression of several viral proteins between AD169 and Merlin in ZAP knockdown cells, but observed a larger increase in infectious virus in AD169 compared to Merlin in the absence of ZAP, suggesting that ZAP inhibited events late in AD169 replication. In addition, there was no clear difference in the CpG abundance of AD169 and Merlin RNAs, indicating that genomic content of the two virus strains was unlikely to be responsible for differences in their sensitivity to ZAP. Instead, we observed less ZAP expression in Merlin-infected cells late in replication compared to AD169-infected cells, which may be related to different abilities of the two virus strains to regulate interferon signaling. Therefore, there are strain-dependent differences in the sensitivity of HCMV to ZAP, and the ability of low-passage HCMV strain Merlin to evade inhibition by ZAP is likely related to its ability to regulate interferon signaling, not the CpG content of RNAs produced from its genome. IMPORTANCE Determining the function of cellular antiviral factors can inform our understanding of virus replication. The zinc finger antiviral protein (ZAP) can inhibit the replication of diverse viruses. Here, we examined ZAP interaction with the DNA virus human cytomegalovirus (HCMV). We found HCMV strain-dependent differences in the ability of ZAP to influence HCMV replication, which may be related to the interaction of HCMV strains with the type I interferon system. These observations affect our current understanding of how ZAP restricts HCMV and how HCMV interacts with the type I interferon system.


Assuntos
Citomegalovirus , Interferon Tipo I , Humanos , Citomegalovirus/metabolismo , Neurofibromina 2/metabolismo , Neurofibromina 2/farmacologia , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/fisiologia , Antivirais/farmacologia , Interferon Tipo I/metabolismo , Dedos de Zinco
8.
Sci Rep ; 12(1): 21429, 2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36504241

RESUMO

Concentration dependency of phenotypic and genotypic isoniazid-rifampicin resistance emergence was investigated to obtain a mechanistic understanding on how anti-mycobacterial drugs facilitate the emergence of bacterial populations that survive throughout treatment. Using static kill curve experiments, observing two evolution cycles, it was demonstrated that rifampicin resistance was the result of non-specific mechanisms and not associated with accumulation of drug resistance encoding SNPs. Whereas, part of isoniazid resistance could be accounted for by accumulation of specific SNPs, which was concentration dependent. Using a Hollow Fibre Infection Model it was demonstrated that emergence of resistance did not occur at concentration-time profiles mimicking the granuloma. This study showed that disentangling and quantifying concentration dependent emergence of resistance provides an improved rational for drug and dose selection although further work to understand the underlying mechanisms is needed to improve the drug development pipeline.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Antibacterianos , Farmacorresistência Bacteriana/genética , Genótipo , Isoniazida/farmacologia , Rifampina/farmacologia
9.
Medicine (Baltimore) ; 101(46): e31419, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401392

RESUMO

Microbiota composition in breast milk affects intestinal and respiratory microbiota colonization and the mucosal immune system's development in infants. The metabolomic content of breast milk is thought to interact with the microbiota and may influence developing infant immunity. One hundred seven Gambian mothers and their healthy, vaginally delivered, exclusively breastfed infants were included in our study. We analyzed 32 breast milk samples, 51 maternal rectovaginal swabs and 30 infants' rectal swabs at birth. We also analyzed 9 breast milk samples and 18 infants' nasopharyngeal swabs 60 days post-delivery. We used 16S rRNA gene sequencing to determine the microbiota composition. Metabolomic profiling analysis was performed on colostrum and mature breast milk samples using a multiplatform approach combining 1-H Nuclear Magnetic Resonance Spectroscopy and Gas Chromatography-Mass Spectrometry. Bacterial communities were distinct in composition and diversity across different sample types. Breast milk composition changed over the first 60 days of lactation. α-1,4- and α-1,3-fucosylated human milk oligosaccharides, and other 33 key metabolites in breast milk (monosaccharides, sugar alcohols and fatty acids) increased between birth and day 60 of life. This study's results indicate that infant gut and respiratory microbiota are unique bacterial communities, distinct from maternal gut and breast milk, respectively. Breast milk microbiota composition and metabolomic profile change throughout lactation. These changes may contribute to the infant's immunological, metabolic, and neurological development and could consist the basis for future interventions to correct disrupted early life microbial colonization.


Assuntos
Microbiota , Leite Humano , Humanos , Lactente , Recém-Nascido , Feminino , Leite Humano/química , Aleitamento Materno , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Estudos Prospectivos , Gâmbia , Lactação , Bactérias
10.
Front Microbiol ; 13: 1017278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267174

RESUMO

The RNA chaperone Hfq promotes the association of small RNAs (sRNAs) with cognate mRNAs, controlling the expression of bacterial phenotype. Actinobacillus pleuropneumoniae hfq mutants strains are attenuated for virulence in pigs, impaired in the ability to form biofilms, and more susceptible to stress, but knowledge of the extent of sRNA involvement is limited. Here, using A. pleuropneumoniae strain MIDG2331 (serovar 8), 14 sRNAs were identified by co-immunoprecipitation with Hfq and the expression of eight, identified as trans-acting sRNAs, were confirmed by Northern blotting. We focused on one of these sRNAs, named Rna01, containing a putative promoter for RpoE (stress regulon) recognition. Knockout mutants of rna01 and a double knockout mutant of rna01 and hfq, both had decreased biofilm formation and hemolytic activity, attenuation for virulence in Galleria mellonella, altered stress susceptibility, and an altered outer membrane protein profile. Rna01 affected extracellular vesicle production, size and toxicity in G. mellonella. qRT-PCR analysis of rna01 and putative cognate mRNA targets indicated that Rna01 is associated with the extracytoplasmic stress response. This work increases our understanding of the multilayered and complex nature of the influence of Hfq-dependent sRNAs on the physiology and virulence of A. pleuropneumoniae.

11.
Elife ; 112022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36098502

RESUMO

Background: Viral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings. Methods: We conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data collection period, followed by intervention periods comprising 8 weeks of 'rapid' (<48 hr) and 4 weeks of 'longer-turnaround' (5-10 days) sequencing using a sequence reporting tool (SRT). Data were collected on all hospital-onset COVID-19 infections (HOCIs; detected ≥48 hr from admission). The impact of the sequencing intervention on IPC knowledge and actions, and on the incidence of probable/definite hospital-acquired infections (HAIs), was evaluated. Results: A total of 2170 HOCI cases were recorded from October 2020 to April 2021, corresponding to a period of extreme strain on the health service, with sequence reports returned for 650/1320 (49.2%) during intervention phases. We did not detect a statistically significant change in weekly incidence of HAIs in longer-turnaround (incidence rate ratio 1.60, 95% CI 0.85-3.01; p=0.14) or rapid (0.85, 0.48-1.50; p=0.54) intervention phases compared to baseline phase. However, IPC practice was changed in 7.8 and 7.4% of all HOCI cases in rapid and longer-turnaround phases, respectively, and 17.2 and 11.6% of cases where the report was returned. In a 'per-protocol' sensitivity analysis, there was an impact on IPC actions in 20.7% of HOCI cases when the SRT report was returned within 5 days. Capacity to respond effectively to insights from sequencing was breached in most sites by the volume of cases and limited resources. Conclusions: While we did not demonstrate a direct impact of sequencing on the incidence of nosocomial transmission, our results suggest that sequencing can inform IPC response to HOCIs, particularly when returned within 5 days. Funding: COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) (grant code: MC_PC_19027), and Genome Research Limited, operating as the Wellcome Sanger Institute. Clinical trial number: NCT04405934.


Assuntos
COVID-19 , Infecção Hospitalar , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos Prospectivos , Controle de Infecções/métodos , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/prevenção & controle , Hospitais
12.
J Antimicrob Chemother ; 77(6): 1685-1693, 2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35260883

RESUMO

OBJECTIVES: To develop a robust phenotypic antimicrobial susceptibility testing (AST) method with a correctly set breakpoint for pretomanid (Pa), the most recently approved anti-tuberculosis drug. METHODS: The Becton Dickinson Mycobacterial Growth Indicator Tube™ (MGIT) system was used at six laboratories to determine the MICs of a phylogenetically diverse collection of 356 Mycobacterium tuberculosis complex (MTBC) strains to establish the epidemiological cut-off value for pretomanid. MICs were correlated with WGS data to study the genetic basis of differences in the susceptibility to pretomanid. RESULTS: We observed ancient differences in the susceptibility to pretomanid among various members of MTBC. Most notably, lineage 1 of M. tuberculosis, which is estimated to account for 28% of tuberculosis cases globally, was less susceptible than lineages 2, 3, 4 and 7 of M. tuberculosis, resulting in a 99th percentile of 2 mg/L for lineage 1 compared with 0.5 mg/L for the remaining M. tuberculosis lineages. Moreover, we observed that higher MICs (≥8 mg/L), which probably confer resistance, had recently evolved independently in six different M. tuberculosis strains. Unlike the aforementioned ancient differences in susceptibility, these recent differences were likely caused by mutations in the known pretomanid resistance genes. CONCLUSIONS: In light of these findings, the provisional critical concentration of 1 mg/L for MGIT set by EMA must be re-evaluated. More broadly, these findings underline the importance of considering the global diversity of MTBC during clinical development of drugs and when defining breakpoints for AST.


Assuntos
Mycobacterium tuberculosis , Nitroimidazóis , Tuberculose , Antituberculosos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia
13.
Gigascience ; 112022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35169842

RESUMO

BACKGROUND: The Public Health Alliance for Genomic Epidemiology (PHA4GE) (https://pha4ge.org) is a global coalition that is actively working to establish consensus standards, document and share best practices, improve the availability of critical bioinformatics tools and resources, and advocate for greater openness, interoperability, accessibility, and reproducibility in public health microbial bioinformatics. In the face of the current pandemic, PHA4GE has identified a need for a fit-for-purpose, open-source SARS-CoV-2 contextual data standard. RESULTS: As such, we have developed a SARS-CoV-2 contextual data specification package based on harmonizable, publicly available community standards. The specification can be implemented via a collection template, as well as an array of protocols and tools to support both the harmonization and submission of sequence data and contextual information to public biorepositories. CONCLUSIONS: Well-structured, rich contextual data add value, promote reuse, and enable aggregation and integration of disparate datasets. Adoption of the proposed standard and practices will better enable interoperability between datasets and systems, improve the consistency and utility of generated data, and ultimately facilitate novel insights and discoveries in SARS-CoV-2 and COVID-19. The package is now supported by the NCBI's BioSample database.


Assuntos
COVID-19 , SARS-CoV-2 , Genômica , Humanos , Metadados , Saúde Pública , Reprodutibilidade dos Testes
14.
Circ Genom Precis Med ; 15(1): e003391, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35113648

RESUMO

BACKGROUND: Acquired long QT syndrome (aLQTS) is a serious unpredictable adverse drug reaction. Pharmacogenomic markers may predict risk. METHODS: Among 153 aLQTS patients (mean age 58 years [range, 14-88], 98.7% White, 85.6% symptomatic), computational methods identified proteins interacting most significantly with 216 QT-prolonging drugs. All cases underwent sequencing of 31 candidate genes arising from this analysis or associating with congenital LQTS. Variants were filtered using a minor allele frequency <1% and classified for susceptibility for aLQTS. Gene-burden analyses were then performed comparing the primary cohort to control exomes (n=452) and an independent replication aLQTS exome sequencing cohort. RESULTS: In 25.5% of cases, at least one rare variant was identified: 22.2% of cases carried a rare variant in a gene associated with congenital LQTS, and in 4% of cases that variant was known to be pathogenic or likely pathogenic for congenital LQTS; 7.8% cases carried a cytochrome-P450 (CYP) gene variant. Of 12 identified CYP variants, 11 (92%) were in an enzyme known to metabolize at least one culprit drug to which the subject had been exposed. Drug-drug interactions that affected culprit drug metabolism were found in 19% of cases. More than one congenital LQTS variant, CYP gene variant, or drug interaction was present in 7.8% of cases. Gene-burden analyses of the primary cohort compared to control exomes (n=452), and an independent replication aLQTS exome sequencing cohort (n=67) and drug-tolerant controls (n=148) demonstrated an increased burden of rare (minor allele frequency<0.01) variants in CYP genes but not LQTS genes. CONCLUSIONS: Rare susceptibility variants in CYP genes are emerging as potentially important pharmacogenomic risk markers for aLQTS and could form part of personalized medicine approaches in the future.


Assuntos
Predisposição Genética para Doença , Síndrome do QT Longo , Exoma/genética , Frequência do Gene , Testes Genéticos , Humanos , Síndrome do QT Longo/genética , Pessoa de Meia-Idade
15.
Sex Transm Infect ; 98(7): 503-509, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35086915

RESUMO

OBJECTIVES: A lactobacilli-dominated vaginal microbiome may protect against pelvic inflammatory disease (PID), but one dominated by Gardnerella species might increase susceptibility. Not all lactobacilli are equally protective. Recent research suggests that D(-) isomer lactic acid producing lactobacilli (Lactobacillus crispatus, Lactobacillus jensenii and Lactobacillus gasseri) may protect against infection with Chlamydia trachomatis, an important cause of PID. Lactobacillus iners , which produces L(+) isomer lactic acid, may be less protective. We investigated the microbiome in stored vaginal samples from participants who did or did not develop PID during the prevention of pelvic infection (POPI) chlamydia screening trial. METHODS: Long-read 16S rRNA gene nanopore sequencing was used on baseline vaginal samples (one per participant) from all 37 women who subsequently developed clinically diagnosed PID during 12-month follow-up, and 111 frequency matched controls who did not, matched on four possible risk factors for PID: age <20 versus ≥20, black ethnicity versus other ethnicity, chlamydia positive versus negative at baseline and ≥2 sexual partners in the previous year versus 0-1 partners. RESULTS: Samples from 106 women (median age 19 years, 40% black ethnicity, 22% chlamydia positive, 54% reporting multiple partners) were suitable for analysis. Three main taxonomic clusters were identified dominated by L. iners, L. crispatus and Gardnerella vaginalis. There was no association between a more diverse, G. vaginalis dominated microbiome and subsequent PID, although increased Shannon diversity was associated with black ethnicity (p=0.002) and bacterial vaginosis (diagnosed by Gram stain p<0.0001). Women who developed PID had similar relative abundance of protective D(-) isomer lactic acid producing lactobacilli to women without PID, but numbers of PID cases were small. CONCLUSIONS: In the first-ever community-based prospective study of PID, there was no clear association between the vaginal microbiome and subsequent development of PID. Future studies using serial samples may identify vaginal microbial communities that may predispose to PID.


Assuntos
Microbiota , Doença Inflamatória Pélvica , Vaginose Bacteriana , Humanos , Feminino , Adulto Jovem , Adulto , Estudos Prospectivos , Doença Inflamatória Pélvica/epidemiologia , RNA Ribossômico 16S/genética , Vagina/microbiologia , Vaginose Bacteriana/microbiologia , Microbiota/genética , Ácido Láctico
17.
J Gen Virol ; 102(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723784

RESUMO

It is widely recognized that pathogens can be transmitted across the placenta from mother to foetus. Recent re-evaluation of metagenomic studies indicates that the placenta has no unique microbiome of commensal bacteria. However, viral transmission across the placenta, including transmission of DNA viruses such as the human herpesviruses, is possible. A fuller understanding of which DNA virus sequence can be found in the placenta is required. We employed a metagenomic analysis to identify viral DNA sequences in placental metagenomes from full-term births (20 births), pre-term births (13 births), births from pregnancies associated with antenatal infections (12 births) or pre-term births with antenatal infections (three births). Our analysis found only a small number of DNA sequences corresponding to the genomes of human herpesviruses in four of the 48 metagenomes analysed. Therefore, our data suggest that DNA virus infection of the placenta is rare and support the concept that the placenta is largely free of pathogen infection.


Assuntos
Infecções por Vírus de DNA/virologia , Vírus de DNA/genética , Metagenoma , Placenta/virologia , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , Feminino , Genoma Viral , Humanos , Recém-Nascido , Masculino , Gravidez , Complicações na Gravidez/virologia , Nascimento Prematuro , Nascimento a Termo
18.
J Infect ; 83(6): 693-700, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34610391

RESUMO

OBJECTIVES: Recently emerging SARS-CoV-2 variants have been associated with an increased rate of transmission within the community. We sought to determine whether this also resulted in increased transmission within hospitals. METHODS: We collected viral sequences and epidemiological data of patients with community and healthcare associated SARS-CoV-2 infections, sampled from 16th November 2020 to 10th January 2021, from nine hospitals participating in the COG-UK HOCI study. Outbreaks were identified using ward information, lineage and pairwise genetic differences between viral sequences. RESULTS: Mixed effects logistic regression analysis of 4184 sequences showed healthcare-acquired infections were no more likely to be identified as the Alpha variant than community acquired infections. Nosocomial outbreaks were investigated based on overlapping ward stay and SARS-CoV-2 genome sequence similarity. There was no significant difference in the number of patients involved in outbreaks caused by the Alpha variant compared to outbreaks caused by other lineages. CONCLUSIONS: We find no evidence to support it causing more nosocomial transmission than previous lineages. This suggests that the stringent infection prevention measures already in place in UK hospitals contained the spread of the Alpha variant as effectively as other less transmissible lineages, providing reassurance of their efficacy against emerging variants of concern.


Assuntos
COVID-19 , Infecção Hospitalar , Infecção Hospitalar/epidemiologia , Hospitais , Humanos , SARS-CoV-2 , Reino Unido/epidemiologia
19.
BMJ Open Respir Res ; 8(1)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34544733

RESUMO

BACKGROUND: SARS-CoV-2 lineage B.1.1.7 has been associated with an increased rate of transmission and disease severity among subjects testing positive in the community. Its impact on hospitalised patients is less well documented. METHODS: We collected viral sequences and clinical data of patients admitted with SARS-CoV-2 and hospital-onset COVID-19 infections (HOCIs), sampled 16 November 2020 to 10 January 2021, from eight hospitals participating in the COG-UK-HOCI study. Associations between the variant and the outcomes of all-cause mortality and intensive therapy unit (ITU) admission were evaluated using mixed effects Cox models adjusted by age, sex, comorbidities, care home residence, pregnancy and ethnicity. FINDINGS: Sequences were obtained from 2341 inpatients (HOCI cases=786) and analysis of clinical outcomes was carried out in 2147 inpatients with all data available. The HR for mortality of B.1.1.7 compared with other lineages was 1.01 (95% CI 0.79 to 1.28, p=0.94) and for ITU admission was 1.01 (95% CI 0.75 to 1.37, p=0.96). Analysis of sex-specific effects of B.1.1.7 identified increased risk of mortality (HR 1.30, 95% CI 0.95 to 1.78, p=0.096) and ITU admission (HR 1.82, 95% CI 1.15 to 2.90, p=0.011) in females infected with the variant but not males (mortality HR 0.82, 95% CI 0.61 to 1.10, p=0.177; ITU HR 0.74, 95% CI 0.52 to 1.04, p=0.086). INTERPRETATION: In common with smaller studies of patients hospitalised with SARS-CoV-2, we did not find an overall increase in mortality or ITU admission associated with B.1.1.7 compared with other lineages. However, women with B.1.1.7 may be at an increased risk of admission to intensive care and at modestly increased risk of mortality.


Assuntos
COVID-19 , SARS-CoV-2 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/mortalidade , COVID-19/virologia , Teste para COVID-19 , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Reino Unido , Adulto Jovem
20.
Antibiotics (Basel) ; 10(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208220

RESUMO

Mortality in neonates with Gram-negative bloodstream infections has remained unacceptably high. Very few data are available on the impact of resistance profiles, virulence factors, appropriateness of empirical treatment and clinical characteristics on patients' mortality. A survival analysis to investigate 28-day mortality probability and predictors was performed including (I) infants <90 days (II) with an available Enterobacterales blood isolate with (III) clinical, treatment and 28-day outcome data. Eighty-seven patients were included. Overall, 299 virulence genes were identified among all the pathogens. Escherichia coli had significantly more virulence genes identified compared with other species. A strong positive correlation between the number of resistance and virulence genes carried by each isolate was found. The cumulative probability of death obtained by the Kaplan-Meier survival analysis was 19.5%. In the descriptive analysis, early age at onset, gestational age at onset, culture positive for E. coli and number of classes of virulence genes carried by each isolate were significantly associated with mortality. By Cox multivariate regression, none of the investigated variables was significant. This pilot study has demonstrated the feasibility of investigating the association between neonatal sepsis mortality and the causative Enterobacterales isolates virulome. This relationship needs further exploration in larger studies, ideally including host immunopathological response, in order to develop a tailor-made therapeutic strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...