Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(12): 102625, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306823

RESUMO

Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder caused by N-sulfoglucosamine sulfohydrolase (SGSH) deficiency. SGSH removes the sulfate from N-sulfoglucosamine residues on the nonreducing end of heparan sulfate (HS-NRE) within lysosomes. Enzyme deficiency results in accumulation of partially degraded HS within lysosomes throughout the body, leading to a progressive severe neurological disease. Enzyme replacement therapy has been proposed, but further evaluation of the treatment strategy is needed. Here, we used Chinese hamster ovary cells to produce a highly soluble and fully active recombinant human sulfamidase (rhSGSH). We discovered that rhSGSH utilizes both the CI-MPR and LRP1 receptors for uptake into patient fibroblasts. A single intracerebroventricular (ICV) injection of rhSGSH in MPS IIIA mice resulted in a tissue half-life of 9 days and widespread distribution throughout the brain. Following a single ICV dose, both total HS and the MPS IIIA disease-specific HS-NRE were dramatically reduced, reaching a nadir 2 weeks post dose. The durability of effect for reduction of both substrate and protein markers of lysosomal dysfunction and a neuroimmune response lasted through the 56 days tested. Furthermore, seven weekly 148 µg doses ICV reduced those markers to near normal and produced a 99.5% reduction in HS-NRE levels. A pilot study utilizing every other week dosing in two animals supports further evaluation of less frequent dosing. Finally, our dose-response study also suggests lower doses may be efficacious. Our findings show that rhSGSH can normalize lysosomal HS storage and markers of a neuroimmune response when delivered ICV.


Assuntos
Encefalopatias , Mucopolissacaridose III , Cricetinae , Animais , Humanos , Camundongos , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/metabolismo , Células CHO , Projetos Piloto , Cricetulus , Hidrolases/metabolismo , Encéfalo/metabolismo , Heparitina Sulfato/metabolismo , Encefalopatias/metabolismo , Lisossomos/metabolismo , Modelos Animais de Doenças
2.
Sci Rep ; 11(1): 14486, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262084

RESUMO

Krabbe disease (KD) and metachromatic leukodystrophy (MLD) are caused by accumulation of the glycolipids galactosylceramide (GalCer) and sulfatide and their toxic metabolites psychosine and lysosulfatide, respectively. We discovered a potent and selective small molecule inhibitor (S202) of ceramide galactosyltransferase (CGT), the key enzyme for GalCer biosynthesis, and characterized its use as substrate reduction therapy (SRT). Treating a KD mouse model with S202 dose-dependently reduced GalCer and psychosine in the central (CNS) and peripheral (PNS) nervous systems and significantly increased lifespan. Similarly, treating an MLD mouse model decreased sulfatides and lysosulfatide levels. Interestingly, lower doses of S202 partially inhibited CGT and selectively reduced synthesis of non-hydroxylated forms of GalCer and sulfatide, which appear to be the primary source of psychosine and lysosulfatide. Higher doses of S202 more completely inhibited CGT and reduced the levels of both non-hydroxylated and hydroxylated forms of GalCer and sulfatide. Despite the significant benefits observed in murine models of KD and MLD, chronic CGT inhibition negatively impacted both the CNS and PNS of wild-type mice. Therefore, further studies are necessary to elucidate the full therapeutic potential of CGT inhibition.


Assuntos
Inibidores Enzimáticos/farmacologia , Leucodistrofia de Células Globoides/tratamento farmacológico , Leucodistrofia Metacromática/tratamento farmacológico , N-Acilesfingosina Galactosiltransferase/antagonistas & inibidores , N-Acilesfingosina Galactosiltransferase/metabolismo , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Galactosilceramidas/metabolismo , Gangliosídeo Galactosiltransferase/genética , Gangliosídeo Galactosiltransferase/metabolismo , Humanos , Leucodistrofia de Células Globoides/mortalidade , Leucodistrofia Metacromática/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Psicosina/análogos & derivados , Psicosina/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Sulfotransferases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(40): 20097-20103, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527255

RESUMO

Infantile globoid cell leukodystrophy (GLD, Krabbe disease) is a fatal demyelinating disorder caused by a deficiency in the lysosomal enzyme galactosylceramidase (GALC). GALC deficiency leads to the accumulation of the cytotoxic glycolipid, galactosylsphingosine (psychosine). Complementary evidence suggested that psychosine is synthesized via an anabolic pathway. Here, we show instead that psychosine is generated catabolically through the deacylation of galactosylceramide by acid ceramidase (ACDase). This reaction uncouples GALC deficiency from psychosine accumulation, allowing us to test the long-standing "psychosine hypothesis." We demonstrate that genetic loss of ACDase activity (Farber disease) in the GALC-deficient mouse model of human GLD (twitcher) eliminates psychosine accumulation and cures GLD. These data suggest that ACDase could be a target for substrate reduction therapy (SRT) in Krabbe patients. We show that pharmacological inhibition of ACDase activity with carmofur significantly decreases psychosine accumulation in cells from a Krabbe patient and prolongs the life span of the twitcher (Twi) mouse. Previous SRT experiments in the Twi mouse utilized l-cycloserine, which inhibits an enzyme several steps upstream of psychosine synthesis, thus altering the balance of other important lipids. Drugs that directly inhibit ACDase may have a more acceptable safety profile due to their mechanistic proximity to psychosine biogenesis. In total, these data clarify our understanding of psychosine synthesis, confirm the long-held psychosine hypothesis, and provide the impetus to discover safe and effective inhibitors of ACDase to treat Krabbe disease.


Assuntos
Ceramidase Ácida/genética , Deleção de Genes , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Psicosina/metabolismo , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Leucodistrofia de Células Globoides/tratamento farmacológico
4.
Proc Natl Acad Sci U S A ; 111(41): 14870-5, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25267636

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB, Sanfilippo syndrome type B) is a lysosomal storage disease characterized by profound intellectual disability, dementia, and a lifespan of about two decades. The cause is mutation in the gene encoding α-N-acetylglucosaminidase (NAGLU), deficiency of NAGLU, and accumulation of heparan sulfate. Impediments to enzyme replacement therapy are the absence of mannose 6-phosphate on recombinant human NAGLU and the blood-brain barrier. To overcome the first impediment, a fusion protein of recombinant NAGLU and a fragment of insulin-like growth factor II (IGFII) was prepared for endocytosis by the mannose 6-phosphate/IGFII receptor. To bypass the blood-brain barrier, the fusion protein ("enzyme") in artificial cerebrospinal fluid ("vehicle") was administered intracerebroventricularly to the brain of adult MPS IIIB mice, four times over 2 wk. The brains were analyzed 1-28 d later and compared with brains of MPS IIIB mice that received vehicle alone or control (heterozygous) mice that received vehicle. There was marked uptake of the administered enzyme in many parts of the brain, where it persisted with a half-life of approximately 10 d. Heparan sulfate, and especially disease-specific heparan sulfate, was reduced to control level. A number of secondary accumulations in neurons [ß-hexosaminidase, LAMP1(lysosome-associated membrane protein 1), SCMAS (subunit c of mitochondrial ATP synthase), glypican 5, ß-amyloid, P-tau] were reduced almost to control level. CD68, a microglial protein, was reduced halfway. A large amount of enzyme also appeared in liver cells, where it reduced heparan sulfate and ß-hexosaminidase accumulation to control levels. These results suggest the feasibility of enzyme replacement therapy for MPS IIIB.


Assuntos
Acetilglucosaminidase/uso terapêutico , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Fator de Crescimento Insulin-Like II/uso terapêutico , Mucopolissacaridose III/tratamento farmacológico , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Biomarcadores/metabolismo , Encéfalo/patologia , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Endocitose , Fibroblastos/metabolismo , Fibroblastos/patologia , Heparitina Sulfato/metabolismo , Humanos , Injeções Intraventriculares , Fígado/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Mucopolissacaridose III/patologia , Neurônios/metabolismo , Neurônios/patologia , Ligação Proteica , beta-N-Acetil-Hexosaminidases/metabolismo
5.
J Biol Chem ; 287(41): 34101-9, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22879591

RESUMO

Neutrophil serine proteases play an important role in inflammation by modulating neutrophil effector functions. We have previously shown that neutrophils deficient in the serine proteases cathepsin G and neutrophil elastase (CG/NE neutrophils) exhibit severe defects in chemokine CXCL2 release and reactive oxygen species (ROS) production when activated on immobilized immune complex. Exogenously added active CG rescues these defects, but the mechanism remains undefined. Using a protease-based proteomic approach, we found that, in vitro, the addition of exogenous CG to immune complex-stimulated CG/NE neutrophils led to a decrease in the level of cell-associated annexin A1 (AnxA1) and cathelin-related antimicrobial peptide (CRAMP), both known inflammatory mediators. We further confirmed that, in vivo, CG was required for the extracellular release of AnxA1 and CRAMP in a subcutaneous air pouch model. In vitro, CG efficiently cleaved AnxA1, releasing the active N-terminal peptide Ac2-26, and processed CRAMP in limited fashion. Ac2-26 and CRAMP peptides enhanced the release of CXCL2 by CG/NE neutrophils in a dose-dependent manner via formyl peptide receptor (FPR) stimulation. Blockade of FPRs by an antagonist, Boc2 (t-Boc-Phe-d-Leu-Phe-d-Leu-Phe), abrogates CXCL2 release, whereas addition of FPR agonists, fMLF and F2L, relieves Boc2 inhibition. Furthermore, the addition of active CG, but not inactive CG, also relieves Boc2 inhibition. These findings suggest that CG modulates neutrophil effector functions partly by controlling the release (and proteolysis) of FPR agonists. Unexpectedly, we found that mature CRAMP, but not Ac2-26, induced ROS production through an FPR-independent pathway.


Assuntos
Catelicidinas/metabolismo , Catepsina G/metabolismo , Neutrófilos/metabolismo , Proteólise , Receptores de Formil Peptídeo/agonistas , Animais , Anexina A1/genética , Anexina A1/imunologia , Anexina A1/metabolismo , Peptídeos Catiônicos Antimicrobianos , Catelicidinas/genética , Catelicidinas/imunologia , Catepsina G/genética , Catepsina G/imunologia , Quimiocina CXCL2/genética , Quimiocina CXCL2/imunologia , Quimiocina CXCL2/metabolismo , Fatores Quimiotáticos/genética , Fatores Quimiotáticos/imunologia , Fatores Quimiotáticos/metabolismo , Camundongos , Camundongos Mutantes , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Neutrófilos/citologia , Neutrófilos/imunologia , Oligopeptídeos/farmacologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Formil Peptídeo/antagonistas & inibidores , Receptores de Formil Peptídeo/imunologia , Receptores de Formil Peptídeo/metabolismo
6.
J Biol Chem ; 284(43): 29684-91, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19700765

RESUMO

Lysosomal storage diseases (LSD) are metabolic disorders characterized by accumulation of undegraded material. The mucopolysaccharidoses (MPS) are LSDs defined by the storage of glycosaminoglycans. Previously, we hypothesized that cells affected with LSD have increased energy expenditure for biosynthesis because of deficiencies of raw materials sequestered within the lysosome. Thus, LSDs can be characterized as diseases of deficiency as well as overabundance (lysosomal storage). In this study, metabolite analysis identified deficiencies in simple sugars, nucleotides, and lipids in the livers of MPSI mice. In contrast, most amino acids, amino acid derivatives, dipeptides, and urea were elevated. These data suggest that protein catabolism, perhaps because of increased autophagy, is at least partially fulfilling intermediary metabolism. Thus, maintaining glycosaminoglycan synthesis in the absence of recycled precursors results in major shifts in the energy utilization of the cells. A high fat diet increased simple sugars and some fats and lowered the apparent protein catabolism. Interestingly, autophagy, which is increased in several LSDs, is responsive to dietary intervention and is reduced in MPSVII and MPSI mice fed a high fat diet. Although long term dietary treatment improved body weight in MPSVII mice, it failed to improve life span or retinal function. In addition, the ventricular hypertrophy and proximal aorta dilation observed in MPSVII mice were unchanged by a high fat, simple sugar diet. As the mechanism of this energy imbalance is better understood, a more targeted nutrient approach may yet prove beneficial as an adjunct therapy to traditional approaches.


Assuntos
Metabolismo Energético , Glicosaminoglicanos/metabolismo , Lisossomos/metabolismo , Mucopolissacaridoses/metabolismo , Animais , Autofagia/efeitos dos fármacos , Carboidratos da Dieta/farmacologia , Gorduras na Dieta/farmacologia , Longevidade/efeitos dos fármacos , Camundongos , Mucopolissacaridoses/dietoterapia , Mucopolissacaridoses/patologia
7.
J Biol Chem ; 282(49): 35765-71, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17911106

RESUMO

The mucopolysaccharidosis (MPS) type VII mouse was originally described as the adipose storage deficiency mouse because of its extreme lean phenotype of unknown etiology. Here, we show that adipose storage deficiency and lower leptin levels are common to five different lysosomal storage diseases (LSDs): MPSI, MPSIIIB, MPSVII, Niemann-Pick type A/B, and infantile neuronal ceroid lipofuscinosis. Elevated circulating pro-inflammatory proteins (VCAM1 and MCP1) were found in multiple LSDs. Multiple anti-inflammatory strategies (dexamethasone, MCP1 deficiency, M3 expression) failed to alter adiposity in LSD animals. All of the models had normal or greater caloric intake and lower to normal metabolic rate, fasting plasma glucose, non-esterified fatty acids, cholesterol, and triglycerides. Triglycerides were lower in the livers of MPSI mice, and the trend was lower in the muscle. Lipid absorption and processing in MPSI mice were indistinguishable from those in normal mice following oral gavage of olive oil. The increased lean mass of MPSI and MPSIIIB mice suggests a shift in adipose triglycerides to lysosomal storage. In agreement, MPSI livers had a similar total caloric content but reduced caloric density, indicating a shift in energy from lipids to proteins/carbohydrates (lysosomal storage). Enzyme replacement therapy normalized the caloric density within 48 h without reducing total caloric content. This was due to an increase in lipids. Recycling of stored material is likely reduced or nonexistent. Therefore, to maintain homeostasis, energy is likely diverted to synthesis at the expense of typical energy storage depots. Thus, these diseases will serve as important tools in studying the role of lysosome function in metabolism and obesity.


Assuntos
Modelos Animais de Doenças , Metabolismo Energético , Doenças por Armazenamento dos Lisossomos/sangue , Lisossomos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adiposidade , Animais , Glicemia/análise , Metabolismo dos Carboidratos , Quimiocina CCL2/sangue , Quimiocina CCL2/uso terapêutico , Jejum/sangue , Mediadores da Inflamação/sangue , Leptina/sangue , Metabolismo dos Lipídeos , Doenças por Armazenamento dos Lisossomos/patologia , Doenças por Armazenamento dos Lisossomos/terapia , Lisossomos/patologia , Camundongos , Obesidade/sangue , Obesidade/patologia , Obesidade/terapia , Molécula 1 de Adesão de Célula Vascular/sangue
8.
Biochem J ; 379(Pt 2): 461-9, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-14705966

RESUMO

The lysosomal storage disease MPS VII (mucopolysaccharidosis type VII) is caused by a deficiency in beta-glucuronidase activity, and results in the accumulation of partially degraded glycosaminoglycans in many cell types. Although MPS VII is a simple monogenetic disorder, the clinical presentation is complex and incompletely understood. ERT (enzyme replacement therapy) is relatively effective at improving the clinical course of the disease; however, some pathologies persist. In order to clarify the molecular events contributing to the disease phenotype and how ERT might impact upon them, we analysed liver tissue from untreated and treated MPS VII mice at both 2 and 5 months of age using biochemical assays and microarray analysis. Overall, as the disease progresses, more genes have altered expression and, at either age, numerous transcriptional changes in multiple pathways appear to be refractory to therapy. With respect to the primary site of disease, both transcriptional and post-transcriptional mechanisms are involved in the regulation of lysosomal enzymes and other lysosome-associated proteins. Many of the changes observed in both lysosome-associated mRNAs and proteins are normalized by enzyme replacement. In addition, gene expression changes in seemingly unrelated pathways may account for the complex metabolic phenotype of the MPS VII mouse. In particular, beta-glucuronidase deficiency appears to induce physiological malnutrition in MPS VII mice. Malnutrition may account for the pronounced adipose storage deficiency observed in this animal. Studying the molecular response to lysosomal storage, especially those changes recalcitrant to therapy, has revealed additional targets that may improve the efficacy of existing therapies.


Assuntos
Glucuronidase/uso terapêutico , Fígado/metabolismo , Mucopolissacaridose VII/tratamento farmacológico , Transcrição Gênica , Animais , Perfilação da Expressão Gênica , Fígado/química , Fígado/patologia , Lisossomos/química , Masculino , Camundongos , Camundongos Mutantes , Mucopolissacaridose VII/genética , Mucopolissacaridose VII/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...