Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(44): 18886-18896, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33103886

RESUMO

The α-ketoglutarate (αKG)-dependent oxygenases catalyze a diverse range of chemical reactions using a common high-spin FeIV═O intermediate that, in most reactions, abstract a hydrogen atom from the substrate. Previously, the FeIV═O intermediate in the αKG-dependent halogenase SyrB2 was characterized by nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations, which demonstrated that it has a trigonal-pyramidal geometry with the scissile C-H bond of the substrate calculated to be perpendicular to the Fe-O bond. Here, we have used NRVS and DFT calculations to show that the FeIV═O complex in taurine dioxygenase (TauD), the αKG-dependent hydroxylase in which this intermediate was first characterized, also has a trigonal bipyramidal geometry but with an aspartate residue replacing the equatorial halide of the SyrB2 intermediate. Computational analysis of hydrogen atom abstraction by square pyramidal, trigonal bipyramidal, and six-coordinate FeIV═O complexes in two different substrate orientations (one more along [σ channel] and another more perpendicular [π channel] to the Fe-O bond) reveals similar activation barriers. Thus, both substrate approaches to all three geometries are competent in hydrogen atom abstraction. The equivalence in reactivity between the two substrate orientations arises from compensation of the promotion energy (electronic excitation within the d manifold) required to access the π channel by the significantly larger oxyl character present in the pπ orbital oriented toward the substrate, which leads to an earlier transition state along the C-H coordinate.


Assuntos
Hidrogênio/química , Ferro/química , Oxigênio/química , Catálise , Teoria da Densidade Funcional , Dioxigenases/química , Dioxigenases/metabolismo , Hidrogênio/metabolismo , Ácidos Cetoglutáricos/química , Espectroscopia de Ressonância Magnética
2.
J Am Chem Soc ; 139(20): 7062-7070, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28457126

RESUMO

Binuclear non-heme iron enzymes activate O2 for diverse chemistries that include oxygenation of organic substrates and hydrogen atom abstraction. This process often involves the formation of peroxo-bridged biferric intermediates, only some of which can perform electrophilic reactions. To elucidate the geometric and electronic structural requirements to activate peroxo reactivity, the active peroxo intermediate in 4-aminobenzoate N-oxygenase (AurF) has been characterized spectroscopically and computationally. A magnetic circular dichroism study of reduced AurF shows that its electronic and geometric structures are poised to react rapidly with O2. Nuclear resonance vibrational spectroscopic definition of the peroxo intermediate formed in this reaction shows that the active intermediate has a protonated peroxo bridge. Density functional theory computations on the structure established here show that the protonation activates peroxide for electrophilic/single-electron-transfer reactivity. This activation of peroxide by protonation is likely also relevant to the reactive peroxo intermediates in other binuclear non-heme iron enzymes.


Assuntos
Proteínas de Bactérias/química , Oxigenases/química , Peróxidos/metabolismo , Teoria Quântica , Estrutura Molecular , Peróxidos/química
3.
J Am Chem Soc ; 138(15): 5110-22, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27021969

RESUMO

Low temperature magnetic circular dichroism (LT MCD) spectroscopy in combination with quantum-chemical calculations are used to define the electronic structure associated with the geometric structure of the Fe(IV)═O intermediate in SyrB2 that was previously determined by nuclear resonance vibrational spectroscopy. These studies elucidate key frontier molecular orbitals (FMOs) and their contribution to H atom abstraction reactivity. The VT MCD spectra of the enzymatic S = 2 Fe(IV)═O intermediate with Br(-) ligation contain information-rich features that largely parallel the corresponding spectra of the S = 2 model complex (TMG3tren)Fe(IV)═O (Srnec, M.; Wong, S. D.; England, J; Que, L; Solomon, E. I. Proc. Natl. Acad. Sci. USA 2012, 109, 14326-14331). However, quantitative differences are observed that correlate with π-anisotropy and oxo donor strength that perturb FMOs and affect reactivity. Due to π-anisotropy, the Fe(IV)═O active site exhibits enhanced reactivity in the direction of the substrate cavity that proceeds through a π-channel that is controlled by perpendicular orientation of the substrate C-H bond relative to the halide-Fe(IV)═O plane. Also, the increased intrinsic reactivity of the SyrB2 intermediate relative to the ferryl model complex is correlated to a higher oxyl character of the Fe(IV)═O at the transition states resulting from the weaker ligand field of the halogenase.


Assuntos
Glutaratos/química , Hidrogênio/química , Compostos de Ferro/química , Ferroproteínas não Heme/química , Oxirredutases/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Glutaratos/metabolismo , Compostos de Ferro/metabolismo , Modelos Moleculares , Ferroproteínas não Heme/metabolismo , Oxirredutases/metabolismo , Teoria Quântica , Treonina/química , Treonina/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(24): 8797-802, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24889637

RESUMO

Strategies for O2 activation by copper enzymes were recently expanded to include mononuclear Cu sites, with the discovery of the copper-dependent polysaccharide monooxygenases, also classified as auxiliary-activity enzymes 9-11 (AA9-11). These enzymes are finding considerable use in industrial biofuel production. Crystal structures of polysaccharide monooxygenases have emerged, but experimental studies are yet to determine the solution structure of the Cu site and how this relates to reactivity. From X-ray absorption near edge structure and extended X-ray absorption fine structure spectroscopies, we observed a change from four-coordinate Cu(II) to three-coordinate Cu(I) of the active site in solution, where three protein-derived nitrogen ligands coordinate the Cu in both redox states, and a labile hydroxide ligand is lost upon reduction. The spectroscopic data allowed for density functional theory calculations of an enzyme active site model, where the optimized Cu(I) and (II) structures were consistent with the experimental data. The O2 reactivity of the Cu(I) site was probed by EPR and stopped-flow absorption spectroscopies, and a rapid one-electron reduction of O2 and regeneration of the resting Cu(II) enzyme were observed. This reactivity was evaluated computationally, and by calibration to Cu-superoxide model complexes, formation of an end-on Cu-AA9-superoxide species was found to be thermodynamically favored. We discuss how this thermodynamically difficult one-electron reduction of O2 is enabled by the unique protein structure where two nitrogen ligands from His1 dictate formation of a T-shaped Cu(I) site, which provides an open coordination position for strong O2 binding with very little reorganization energy.


Assuntos
Cobre/química , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Oxigênio/química , Polissacarídeos/química , Thermoascus/enzimologia , Catálise , Domínio Catalítico , Quitina/química , Simulação por Computador , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Modelos Moleculares , Espectrofotometria , Superóxidos/química , Termodinâmica , Raios X
5.
Dalton Trans ; 43(47): 17567-77, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24916844

RESUMO

The non-heme ferryl active sites are of significant interest for their application in biomedical and green catalysis. These sites have been shown to have an S = 1 or S = 2 ground spin state; the latter is functional in biology. Low-temperature magnetic circular dichroism (LT MCD) spectroscopy probes the nature of the excited states in these species including ligand-field (LF) states that are otherwise difficult to study by other spectroscopies. In particular, the temperature dependences of MCD features enable their unambiguous assignment and thus determination of the low-lying excited states in two prototypical S = 1 and S = 2 NHFe(IV)[double bond, length as m-dash]O complexes. Furthermore, some MCD bands exhibit vibronic structures that allow mapping of excited-state interactions and their effects on the potential energy surfaces (PESs). For the S = 2 species, there is also an unusual spectral feature in both near-infrared absorption and MCD spectra - Fano antiresonance (dip in Abs) and Fano resonance (sharp peak in MCD) that indicates the weak spin-orbit coupling of an S = 1 state with the S = 2 LF state. These experimental data are correlated with quantum-chemical calculations that are further extended to analyze the low-lying electronic states and the evolution of their multiconfigurational characters along the Fe-O PESs. These investigations show that the lowest-energy states develop oxyl Fe(III) character at distances that are relevant to the transition state (TS) for H-atom abstraction and define the frontier molecular orbitals that participate in the reactivity of S = 1 vs. S = 2 non-heme Fe(IV)[double bond, length as m-dash]O active sites. The S = 1 species has only one available channel that requires the C-H bond of a substrate to approach perpendicular to the Fe-oxo bond (the π channel). In contrast, there are three channels (one σ and two π) available for the S = 2 non-heme Fe(IV)[double bond, length as m-dash]O system allowing C-H substrate approach both along and perpendicular to the Fe-oxo bond that have important implications for enzymatic selectivity.


Assuntos
Compostos de Ferro/química , Oxigênio/química , Teoria Quântica , Domínio Catalítico , Dicroísmo Circular , Propriedades de Superfície , Temperatura
6.
J Am Chem Soc ; 135(46): 17573-84, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24131208

RESUMO

The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) utilizes a Mn/Fe heterobinuclear cofactor, rather than the Fe/Fe cofactor found in the ß (R2) subunit of the class Ia enzymes, to react with O2. This reaction produces a stable Mn(IV)Fe(III) cofactor that initiates a radical, which transfers to the adjacent α (R1) subunit and reacts with the substrate. We have studied the Mn(IV)Fe(III) cofactor using nuclear resonance vibrational spectroscopy (NRVS) and absorption (Abs)/circular dichroism (CD)/magnetic CD (MCD)/variable temperature, variable field (VTVH) MCD spectroscopies to obtain detailed insight into its geometric/electronic structure and to correlate structure with reactivity; NRVS focuses on the Fe(III), whereas MCD reflects the spin-allowed transitions mostly on the Mn(IV). We have evaluated 18 systematically varied structures. Comparison of the simulated NRVS spectra to the experimental data shows that the cofactor has one carboxylate bridge, with Mn(IV) at the site proximal to Phe127. Abs/CD/MCD/VTVH MCD data exhibit 12 transitions that are assigned as d-d and oxo and OH(-) to metal charge-transfer (CT) transitions. Assignments are based on MCD/Abs intensity ratios, transition energies, polarizations, and derivative-shaped pseudo-A term CT transitions. Correlating these results with TD-DFT calculations defines the Mn(IV)Fe(III) cofactor as having a µ-oxo, µ-hydroxo core and a terminal hydroxo ligand on the Mn(IV). From DFT calculations, the Mn(IV) at site 1 is necessary to tune the redox potential to a value similar to that of the tyrosine radical in class Ia RNR, and the OH(-) terminal ligand on this Mn(IV) provides a high proton affinity that could gate radical translocation to the α (R1) subunit.


Assuntos
Compostos Férricos/química , Manganês/química , Ribonucleotídeo Redutases/química , Chlamydia trachomatis/enzimologia , Cristalografia por Raios X , Elétrons , Compostos Férricos/metabolismo , Manganês/metabolismo , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Ribonucleotídeo Redutases/metabolismo
7.
Acc Chem Res ; 46(11): 2725-39, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24070107

RESUMO

Mononuclear non-heme Fe (NHFe) enzymes play key roles in DNA repair, the biosynthesis of antibiotics, the response to hypoxia, cancer therapy, and many other biological processes. These enzymes catalyze a diverse range of oxidation reactions, including hydroxylation, halogenation, ring closure, desaturation, and electrophilic aromatic substitution (EAS). Most of these enzymes use an Fe(II) site to activate dioxygen, but traditional spectroscopic methods have not allowed researchers to insightfully probe these ferrous active sites. We have developed a methodology that provides detailed geometric and electronic structure insights into these NHFe(II) active sites. Using these data, we have defined a general mechanistic strategy that many of these enzymes use: they control O2 activation (and limit autoxidation and self-hydroxylation) by allowing Fe(II) coordination unsaturation only in the presence of cosubstrates. Depending on the type of enzyme, O2 activation either involves a 2e(-) reduced Fe(III)-OOH intermediate or a 4e(-) reduced Fe(IV)═O intermediate. Nuclear resonance vibrational spectroscopy (NRVS) has provided the geometric structure of these intermediates, and magnetic circular dichroism (MCD) has defined the frontier molecular orbitals (FMOs), the electronic structure that controls reactivity. This Account emphasizes that experimental spectroscopy is critical in evaluating the results of electronic structure calculations. Therefore these data are a key mechanistic bridge between structure and reactivity. For the Fe(III)-OOH intermediates, the anticancer drug activated bleomycin (BLM) acts as the non-heme Fe analog of compound 0 in heme (e.g., P450) chemistry. However BLM shows different reactivity: the low-spin (LS) Fe(III)-OOH can directly abstract a H atom from DNA. The LS and high-spin (HS) Fe(III)-OOHs have fundamentally different transition states. The LS transition state goes through a hydroxyl radical, but the HS transition state is activated for EAS without O-O cleavage. This activation is important in one class of NHFe enzymes that utilizes a HS Fe(III)-OOH intermediate in dioxygenation. For Fe(IV)═O intermediates, the LS form has a π-type FMO activated for attack perpendicular to the Fe-O bond. However, the HS form (present in the NHFe enzymes) has a π FMO activated perpendicular to the Fe-O bond and a σ FMO positioned along the Fe-O bond. For the NHFe enzymes, the presence of π and σ FMOs enables enzymatic control in determining the type of reactivity: EAS or H-atom extraction for one substrate with different enzymes and halogenation or hydroxylation for one enzyme with different substrates.


Assuntos
Enzimas/química , Ferro/química , Domínio Catalítico , Compostos Ferrosos/química , Modelos Moleculares , Estrutura Molecular , Espectroscopia de Luz Próxima ao Infravermelho
8.
Nature ; 499(7458): 320-3, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23868262

RESUMO

Mononuclear non-haem iron (NHFe) enzymes catalyse a broad range of oxidative reactions, including halogenation, hydroxylation, ring closure, desaturation and aromatic ring cleavage reactions. They are involved in a number of biological processes, including phenylalanine metabolism, the production of neurotransmitters, the hypoxic response and the biosynthesis of secondary metabolites. The reactive intermediate in the catalytic cycles of these enzymes is a high-spin S = 2 Fe(IV)=O species, which has been trapped for a number of NHFe enzymes, including the halogenase SyrB2 (syringomycin biosynthesis enzyme 2). Computational studies aimed at understanding the reactivity of this Fe(IV)=O intermediate are limited in applicability owing to the paucity of experimental knowledge about its geometric and electronic structure. Synchrotron-based nuclear resonance vibrational spectroscopy (NRVS) is a sensitive and effective method that defines the dependence of the vibrational modes involving Fe on the nature of the Fe(IV)=O active site. Here we present NRVS structural characterization of the reactive Fe(IV)=O intermediate of a NHFe enzyme, namely the halogenase SyrB2 from the bacterium Pseudomonas syringae pv. syringae. This intermediate reacts via an initial hydrogen-atom abstraction step, performing subsequent halogenation of the native substrate or hydroxylation of non-native substrates. A correlation of the experimental NRVS data to electronic structure calculations indicates that the substrate directs the orientation of the Fe(IV)=O intermediate, presenting specific frontier molecular orbitals that can activate either selective halogenation or hydroxylation.


Assuntos
Ferro/química , Oxirredutases/química , Biocatálise , Halogenação , Hidroxilação , Oxirredutases/metabolismo , Pseudomonas syringae/enzimologia
9.
Proc Natl Acad Sci U S A ; 110(16): 6275-80, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23576760

RESUMO

High-valent intermediates of binuclear nonheme iron enzymes are structurally unknown despite their importance for understanding enzyme reactivity. Nuclear resonance vibrational spectroscopy combined with density functional theory calculations has been applied to structurally well-characterized high-valent mono- and di-oxo bridged binuclear Fe model complexes. Low-frequency vibrational modes of these high-valent diiron complexes involving Fe motion have been observed and assigned. These are independent of Fe oxidation state and show a strong dependence on spin state. It is important to note that they are sensitive to the nature of the Fe2 core bridges and provide the basis for interpreting parallel nuclear resonance vibrational spectroscopy data on the high-valent oxo intermediates in the binuclear nonheme iron enzymes.


Assuntos
Enzimas/química , Compostos Férricos/química , Modelos Químicos , Espectroscopia de Mossbauer/métodos , Cristalografia por Raios X , Enzimas/metabolismo , Compostos Férricos/metabolismo , Estrutura Molecular , Oxirredução , Vibração
11.
Proc Natl Acad Sci U S A ; 109(36): 14326-31, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22908238

RESUMO

S = 2 Fe(IV) ═ O species are key intermediates in the catalysis of most nonheme iron enzymes. This article presents detailed spectroscopic and high-level computational studies on a structurally-defined S = 2 Fe(IV) ═ O species that define its frontier molecular orbitals, which allow its high reactivity. Importantly, there are both π- and σ-channels for reaction, and both are highly reactive because they develop dominant oxyl character at the transition state. These π- and σ-channels have different orientation dependences defining how the same substrate can undergo different reactions (H-atom abstraction vs. electrophilic aromatic attack) with Fe(IV) ═ O sites in different enzymes, and how different substrates can undergo different reactions (hydroxylation vs. halogenation) with an Fe(IV) ═ O species in the same enzyme.


Assuntos
Ferro/química , Modelos Moleculares , Estrutura Molecular , Oxigênio/química , Catálise , Dicroísmo Circular
13.
Proc Natl Acad Sci U S A ; 107(52): 22419-24, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21149675

RESUMO

Bleomycin (BLM) is a glycopeptide anticancer drug capable of effecting single- and double-strand DNA cleavage. The last detectable intermediate prior to DNA cleavage is a low spin Fe(III) peroxy level species, termed activated bleomycin (ABLM). DNA strand scission is initiated through the abstraction of the C-4' hydrogen atom of the deoxyribose sugar unit. Nuclear resonance vibrational spectroscopy (NRVS) aided by extended X-ray absorption fine structure spectroscopy and density functional theory (DFT) calculations are applied to define the natures of Fe(III)BLM and ABLM as (BLM)Fe(III)─OH and (BLM)Fe(III)(η(1)─OOH) species, respectively. The NRVS spectra of Fe(III)BLM and ABLM are strikingly different because in ABLM the δFe─O─O bending mode mixes with, and energetically splits, the doubly degenerate, intense O─Fe─N(ax) transaxial bends. DFT calculations of the reaction of ABLM with DNA, based on the species defined by the NRVS data, show that the direct H-atom abstraction by ABLM is thermodynamically favored over other proposed reaction pathways.


Assuntos
Bleomicina/química , Compostos Férricos/química , Ferro/química , Espectroscopia de Ressonância Magnética/métodos , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Bleomicina/metabolismo , Desoxirribose/química , Desoxirribose/metabolismo , Compostos Férricos/metabolismo , Hidrogênio/química , Ferro/metabolismo , Modelos Moleculares , Estrutura Molecular , Oxigênio/química , Termodinâmica , Vibração , Espectroscopia por Absorção de Raios X
14.
Curr Opin Chem Biol ; 13(1): 99-113, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19278895

RESUMO

Fe(III)OOH and Fe(IV)O intermediates have now been documented in a number of nonheme iron active sites. In this Current Opinion we use spectroscopy combined with electronic structure calculations to define the frontier molecular orbitals (FMOs) of these species and their contributions to reactivity. For the low-spin Fe(III)OOH species in activated bleomycin we show that the reactivity of this nonheme iron intermediate is very different from that of the analogous Compound 0 of cytochrome P450. For Fe(IV)O S=1 model species we experimentally define the electronic structure and its contribution to reactivity, and computationally evaluate how this would change for the Fe(IV)O S=2 intermediates found in nonheme iron enzymes.


Assuntos
Enzimas/metabolismo , Ferro/metabolismo , Ferroproteínas não Heme/química , Ferroproteínas não Heme/metabolismo , Domínio Catalítico , Ativação Enzimática , Enzimas/química , Ferro/química , Teoria Quântica , Análise Espectral
16.
J Am Chem Soc ; 129(51): 15983-96, 2007 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18052249

RESUMO

High-valent FeIV=O species are key intermediates in the catalytic cycles of many mononuclear non-heme iron enzymes and have been structurally defined in model systems. Variable-temperature magnetic circular dichroism (VT-MCD) spectroscopy has been used to evaluate the electronic structures and in particular the Fe-O bonds of three FeIV=O (S = 1) model complexes, [FeIV(O)(TMC)(NCMe)]2+, [FeIV(O)(TMC)(OC(O)CF3)]+, and [FeIV(O)(N4Py)]2+. These complexes are characterized by their strong and covalent Fe-O pi-bonds. The MCD spectra show a vibronic progression in the nonbonding --> pi* excited state, providing the Fe-O stretching frequency and the Fe-O bond length in this excited state and quantifying the pi-contribution to the total Fe-O bond. Correlation of these experimental data to reactivity shows that the [FeIV(O)(N4Py)]2+ complex, with the highest reactivity toward hydrogen-atom abstraction among the three, has the strongest Fe-O pi-bond. Density functional calculations were correlated to the data and support the experimental analysis. The strength and covalency of the Fe-O pi-bond result in high oxygen character in the important frontier molecular orbitals (FMOs) for this reaction, the unoccupied beta-spin d(xz/yz) orbitals, that activates these for electrophilic attack. An extension to biologically relevant FeIV=O (S = 2) enzyme intermediates shows that these can perform electrophilic attack reactions along the same mechanistic pathway (pi-FMO pathway) with similar reactivity but also have an additional reaction channel involving the unoccupied alpha-spin d(z2) orbital (sigma-FMO pathway). These studies experimentally probe the FMOs involved in the reactivity of FeIV=O (S = 1) model complexes resulting in a detailed understanding of the Fe-O bond and its contributions to reactivity.


Assuntos
Compostos Férricos/química , Teoria Quântica , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...