Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38536071

RESUMO

Five bacterial isolates were isolated from Fragaria × ananassa in 1976 in Rydalmere, Australia, during routine biosecurity surveillance. Initially, the results of biochemical characterisation indicated that these isolates represented members of the genus Xanthomonas. To determine their species, further analysis was conducted using both phenotypic and genotypic approaches. Phenotypic analysis involved using MALDI-TOF MS and BIOLOG GEN III microplates, which confirmed that the isolates represented members of the genus Xanthomonas but did not allow them to be classified with respect to species. Genome relatedness indices and the results of extensive phylogenetic analysis confirmed that the isolates were members of the genus Xanthomonas and represented a novel species. On the basis the minimal presence of virulence-associated factors typically found in genomes of members of the genus Xanthomonas, we suggest that these isolates are non-pathogenic. This conclusion was supported by the results of a pathogenicity assay. On the basis of these findings, we propose the name Xanthomonas rydalmerensis, with DAR 34855T = ICMP 24941 as the type strain.


Assuntos
Fragaria , Xanthomonas , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química
2.
Microbiol Resour Announc ; 12(11): e0053623, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37847022

RESUMO

High-quality complete genomes of five Xylella fastidiosa strains were assembled by combining Nanopore and Illumina sequencing data. Among these, International Collection of Micro-organisms from Plants (ICMP) 8731, ICMP 8742 and ICMP 8745 belong to subspecies fastidiosa while ICMP 8739 and ICMP 8740 were determined as subspecies multiplex. The strains were further classified into sequence types.

3.
Nat Microbiol ; 8(9): 1668-1681, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550506

RESUMO

The fungal genus Armillaria contains necrotrophic pathogens and some of the largest terrestrial organisms that cause tremendous losses in diverse ecosystems, yet how they evolved pathogenicity in a clade of dominantly non-pathogenic wood degraders remains elusive. Here we show that Armillaria species, in addition to gene duplications and de novo gene origins, acquired at least 1,025 genes via 124 horizontal gene transfer events, primarily from Ascomycota. Horizontal gene transfer might have affected plant biomass degrading and virulence abilities of Armillaria, and provides an explanation for their unusual, soft rot-like wood decay strategy. Combined multi-species expression data revealed extensive regulation of horizontally acquired and wood-decay related genes, putative virulence factors and two novel conserved pathogenicity-induced small secreted proteins, which induced necrosis in planta. Overall, this study details how evolution knitted together horizontally and vertically inherited genes in complex adaptive traits of plant biomass degradation and pathogenicity in important fungal pathogens.


Assuntos
Armillaria , Armillaria/genética , Armillaria/metabolismo , Biomassa , Transferência Genética Horizontal , Ecossistema , Plantas
4.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36811946

RESUMO

The mutualistic ectomycorrhizal (ECM) fungal genus Pisolithus comprises 19 species defined to date which colonize the roots of >50 hosts worldwide suggesting that substantial genomic and functional evolution occurred during speciation. To better understand this intra-genus variation, we undertook a comparative multi-omic study of nine Pisolithus species sampled from North America, South America, Asia, and Australasia. We found that there was a small core set of genes common to all species (13%), and that these genes were more likely to be significantly regulated during symbiosis with a host than accessory or species-specific genes. Thus, the genetic "toolbox" foundational to the symbiotic lifestyle in this genus is small. Transposable elements were located significantly closer to gene classes including effector-like small secreted proteins (SSPs). Poorly conserved SSPs were more likely to be induced by symbiosis, suggesting that they may be a class of protein that tune host specificity. The Pisolithus gene repertoire is characterized by divergent CAZyme profiles when compared with other fungi, both symbiotic and saprotrophic. This was driven by differences in enzymes associated with symbiotic sugar processing, although metabolomic analysis suggest that neither copy number nor expression of these genes is sufficient to predict sugar capture from a host plant or its metabolism in fungal hyphae. Our results demonstrate that intra-genus genomic and functional diversity within ECM fungi is greater than previously thought, underlining the importance of continued comparative studies within the fungal tree of life to refine our focus on pathways and evolutionary processes foundational to this symbiotic lifestyle.


Assuntos
Basidiomycota , Micorrizas , Micorrizas/genética , Simbiose/genética , Basidiomycota/genética , Raízes de Plantas , Açúcares
5.
Microorganisms ; 10(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35208838

RESUMO

Austropuccinia psidii is a fungal plant pathogen that infects species within the Myrtaceae, causing the disease myrtle rust. Myrtle rust is causing declines in populations within natural and managed ecosystems and is expected to result in species extinctions. Despite this, variation in response to A. psidii exist within some species, from complete susceptibility to resistance that prevents or limits infection by the pathogen. Untargeted metabolomics using Ultra Performance Liquid Chromatography with Ion Mobility followed by analysis using MetaboAnalyst 3.0, was used to explore the chemical defence profiles of resistant, hypersensitive and susceptible phenotypes within Melaleuca quinquenervia during the early stages of A. psidii infection. We were able to identify three separate pools of secondary metabolites: (i) metabolites classified structurally as flavonoids that were naturally higher in the leaves of resistant individuals prior to infection, (ii) organoheterocyclic and carbohydrate-related metabolites that varied with the level of host resistance post-infection, and (iii) metabolites from the terpenoid pathways that were responsive to disease progression regardless of resistance phenotype suggesting that these play a minimal role in disease resistance during the early stages of colonization of this species. Based on the classes of these secondary metabolites, our results provide an improved understanding of key pathways that could be linked more generally to rust resistance with particular application within Melaleuca.

6.
Environ Microbiol ; 24(1): 309-323, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35023254

RESUMO

Forest trees rely on ectomycorrhizal (ECM) fungi to obtain growth-limiting nutrients. While addition of nitrogen (N) has the potential to disrupt these critical relationships, there is conflicting evidence as to the mechanism by which ECM:host mutualism may be affected. We evaluated how N fertilization altered host interactions and gene transcription between Eucalyptus grandis and Pisolithus microcarpus or Pisolithus albus, two closely related ECM species that typically co-occur within the same ecosystem. Our investigation demonstrated species-specific responses to elevated N: P. microcarpus maintained its ability to transport microbially sourced N to its host but had a reduced ability to penetrate into root tissues, while P. albus maintained its colonization ability but reduced delivery of N to its host. Transcriptomic analysis suggests that regulation of different suites of N-transporters may be responsible for these species-specific differences. In addition to N-dependent responses, we were also able to define a conserved 'core' transcriptomic response of Eucalyptus grandis to mycorrhization that was independent of abiotic conditions. Our results demonstrate that even between closely related ECM species, responses to N fertilization can vary considerably, suggesting that a better understanding of the breadth and mechanisms of their responses is needed to support forest ecosystems into the future.


Assuntos
Micorrizas , Ecossistema , Fertilização , Micorrizas/genética , Nitrogênio , Simbiose
7.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35012977

RESUMO

Small RNAs (sRNAs) are known to regulate pathogenic plant-microbe interactions. Emerging evidence from the study of these model systems suggests that microRNAs (miRNAs) can be translocated between microbes and plants to facilitate symbiosis. The roles of sRNAs in mutualistic mycorrhizal fungal interactions, however, are largely unknown. In this study, we characterized miRNAs encoded by the ectomycorrhizal fungus Pisolithus microcarpus and investigated their expression during mutualistic interaction with Eucalyptus grandis. Using sRNA sequencing data and in situ miRNA detection, a novel fungal miRNA, Pmic_miR-8, was found to be transported into E. grandis roots after interaction with P. microcarpus Further characterization experiments demonstrate that inhibition of Pmic_miR-8 negatively impacts the maintenance of mycorrhizal roots in E. grandis, while supplementation of Pmic_miR-8 led to deeper integration of the fungus into plant tissues. Target prediction and experimental testing suggest that Pmic_miR-8 may target the host NB-ARC domain containing transcripts, suggesting a potential role for this miRNA in subverting host signaling to stabilize the symbiotic interaction. Altogether, we provide evidence of previously undescribed cross-kingdom sRNA transfer from ectomycorrhizal fungi to plant roots, shedding light onto the involvement of miRNAs during the developmental process of mutualistic symbioses.


Assuntos
Basidiomycota/genética , Inativação Gênica , MicroRNAs/metabolismo , Micorrizas/genética , Simbiose/genética , Sequência de Bases , Basidiomycota/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , MicroRNAs/genética , Raízes de Plantas/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
New Phytol ; 233(2): 966-982, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699614

RESUMO

The pathways regulated in ectomycorrhizal (EcM) plant hosts during the establishment of symbiosis are not as well understood when compared to the functional stages of this mutualistic interaction. Our study used the EcM host Eucalyptus grandis to elucidate symbiosis-regulated pathways across the three phases of this interaction. Using a combination of RNA sequencing and metabolomics we studied both stage-specific and core responses of E. grandis during colonization by Pisolithus microcarpus. Using exogenous manipulation of the abscisic acid (ABA), we studied the role of this pathway during symbiosis establishment. Despite the mutualistic nature of this symbiosis, a large number of disease signalling TIR-NBS-LRR genes were induced. The transcriptional regulation in E. grandis was found to be dynamic across colonization with a small core of genes consistently regulated at all stages. Genes associated to the carotenoid/ABA pathway were found within this core and ABA concentrations increased during fungal integration into the root. Supplementation of ABA led to improved accommodation of P. microcarpus into E. grandis roots. The carotenoid pathway is a core response of an EcM host to its symbiont and highlights the need to understand the role of the stress hormone ABA in controlling host-EcM fungal interactions.


Assuntos
Eucalyptus , Micorrizas , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Basidiomycota , Eucalyptus/microbiologia , Micorrizas/fisiologia , Raízes de Plantas/metabolismo , Simbiose/fisiologia
9.
Plant Genome ; 14(2): e20103, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33973410

RESUMO

MicroRNAs (miRNAs) are important regulators of biological functions in plants. To find out what roles miRNAs play in regulating symbiotic nitrogen fixation (SNF) in soybean [Glycine max (L.) Merr.], we identified high-confidence differentially expressed (DE) miRNAs from uninoculated roots (UR), rhizobium-inoculated roots (IR), and nodules (NODs) of soybean by robust small RNA sequencing (sRNA-seq). Based on their predicted target messenger RNAs (mRNAs), the expression profiles of some of these DE miRNAs could be linked to nodule functions. In particular, several miRNAs associated with nutrient transportation genes were differentially expressed in IRs and mature NODs. MiR399b, specifically, was highly induced in IRs and NODs, as well as by inorganic phosphate (Pi) starvation. In composite soybean plants overexpressing miR399b, PHOSPHATE2 (PHO2), a known target of miR399b that inhibits the activities of high-affinity Pi transporters, was strongly repressed. In addition, the overexpression of miR399b in the roots of transgenic composite plants significantly improved whole-plant Pi and ureide concentrations and the overall growth in terms of leaf node numbers and whole-plant dry weight. Our findings suggest that the induction of miR399b in NODs could enhance nitrogen fixation and soybean growth, possibly via improving Pi uptake to achieve a better Pi-nitrogen balance to promote SNF in nodules.


Assuntos
Glycine max , MicroRNAs , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Raízes de Plantas/genética , Análise de Sequência de RNA , Glycine max/genética
10.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317061

RESUMO

Nitrogen fixation in soybean consumes a tremendous amount of energy, leading to substantial differences in energy metabolism and mitochondrial activities between nodules and uninoculated roots. While C-to-U RNA editing and intron splicing of mitochondrial transcripts are common in plant species, their roles in relation to nodule functions are still elusive. In this study, we performed RNA-seq to compare transcript profiles and RNA editing of mitochondrial genes in soybean nodules and roots. A total of 631 RNA editing sites were identified on mitochondrial transcripts, with 12% or 74 sites differentially edited among the transcripts isolated from nodules, stripped roots, and uninoculated roots. Eight out of these 74 differentially edited sites are located on the matR transcript, of which the degrees of RNA editing were the highest in the nodule sample. The degree of mitochondrial intron splicing was also examined. The splicing efficiencies of several introns in nodules and stripped roots were higher than in uninoculated roots. These include nad1 introns 2/3/4, nad4 intron 3, nad5 introns 2/3, cox2 intron 1, and ccmFc intron 1. A greater splicing efficiency of nad4 intron 1, a higher NAD4 protein abundance, and a reduction in supercomplex I + III2 were also observed in nodules, although the causal relationship between these observations requires further investigation.


Assuntos
Mitocôndrias/genética , Splicing de RNA , Nódulos Radiculares de Plantas/genética , Regulação da Expressão Gênica de Plantas , Íntrons , Mitocôndrias/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Transcriptoma
11.
New Phytol ; 228(2): 712-727, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562507

RESUMO

Pathogenic microbes are known to manipulate the defences of their hosts through the production of secreted effector proteins. More recently, mutualistic mycorrhizal fungi have also been described as using these secreted effectors to promote host colonization. Here we characterize a mycorrhiza-induced small secreted effector protein of 10 kDa produced by the ectomycorrhizal fungus Pisolithus albus, PaMiSSP10b. We demonstrate that PaMiSSP10b is secreted from fungal hyphae, enters the cells of its host, Eucalyptus grandis, and interacts with an S-adenosyl methionine decarboxylase (AdoMetDC) in the polyamine pathway. Plant polyamines are regulatory molecules integral to the plant immune system during microbial challenge. Using biochemical and transgenic approaches we show that expression of PaMiSSP10b influences levels of polyamines in the plant roots as it enhances the enzymatic activity of AdoMetDC and increases the biosynthesis of higher polyamines. This ultimately favours the colonization success of P. albus. These results identify a new mechanism by which mutualistic microbes are able to manipulate the host´s enzymatic pathways to favour colonization.


Assuntos
Eucalyptus , Micorrizas , Basidiomycota , Raízes de Plantas , Poliaminas , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...