RESUMO
Nine Campylobacter strains were isolated from cattle and feral swine faeces: three were recovered during a 2007 Campylobacter-associated outbreak linked to a dairy, and the other six were isolated during a 2009-2010 survey of farms and ranches in Central California. The species identification of these strains could not be determined by 16S rRNA gene sequencing but were most similar to Campylobacter concisus and Campylobacter mucosalis. Additional atpA typing indicated that the nine strains composed a discrete novel clade related to C. concisus and C. mucosalis. A polyphasic study was undertaken here to clarify their taxonomic position. Phylogenetic analyses were performed based on 16S rRNA gene sequences and the concatenated sequences of 330 core genes. The core gene analysis placed the nine strains into a clade well separated from the other Campylobacter taxa, indicating that these strains represent a novel Campylobacter species. Pairwise digital DNA-DNA hybridization and average nucleotide identity values between these strains and other campylobacters are lower than 16 and 73%, respectively, further supporting their placement into a novel taxon. Standard phenotypic testing was performed. All strains are microaerobic or anaerobic, motile, Gram-negative, slightly-curved rods that are oxidase positive but catalase negative. Strains can be distinguished from the other catalase-negative Campylobacter species using phenotypic markers such as motility, oxidase activity, cephalothin resistance, hippuricase activity, growth at 30 °C, and α-haemolysis. The data presented here show that these strains represent a novel species within Campylobacter, for which the name Campylobacter californiensis sp. nov. (type strain RM6914T=LMG 32304T=CCUG 75329T) is proposed.
Assuntos
Técnicas de Tipagem Bacteriana , Infecções por Campylobacter , Campylobacter , DNA Bacteriano , Fezes , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Animais , Campylobacter/genética , Campylobacter/classificação , Campylobacter/isolamento & purificação , RNA Ribossômico 16S/genética , Bovinos , California , DNA Bacteriano/genética , Fezes/microbiologia , Suínos , Infecções por Campylobacter/microbiologia , Hibridização de Ácido Nucleico , Dados de Sequência MolecularRESUMO
In a previous study characterizing Campylobacter strains deficient in selenium metabolism, 50 strains were found to be similar to, but distinct from, the selenonegative species Campylobacter lanienae. Initial characterization based on multilocus sequence typing and the phylogeny of a set of 20 core genes determined that these strains form three putative taxa within the selenonegative cluster. A polyphasic study was undertaken here to further clarify their taxonomic position within the genus. The 50 selenonegative strains underwent phylogenetic analyses based on the sequences of the 16S rRNA gene and an expanded set of 330 core genes. Standard phenotypic testing was also performed. All strains were microaerobic and anaerobic, Gram-negative, spiral or curved cells with some displaying coccoid morphologies. Strains were motile, oxidase, catalase, and alkaline phosphatase positive, urease negative, and reduced nitrate. Strains within each clade had unique phenotypic profiles that distinguished them from other members of the genus. Core genome phylogeny clearly placed the 50 strains into three clades. Pairwise average nucleotide identity and digital DNA-DNA hybridization values were all below the recommended cut-offs for species delineation with respect to C. lanienae and other related Campylobacter species. The data presented here clearly show that these strains represent three novel species within the genus, for which the names Campylobacter devanensis sp. nov. (type strain RM3662T=LMG 33097T=NCTC 15074T), Campylobacter porcelli sp. nov. (type strain RM6137T=LMG 33098T=CCUG 77054T=NCTC 15075T) and Campylobacter vicugnae sp. nov. (type strain RM12175T=LMG 33099T=CCUG 77055T=NCTC 15076T) are proposed.
Assuntos
Técnicas de Tipagem Bacteriana , Campylobacter , DNA Bacteriano , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Campylobacter/genética , Campylobacter/classificação , Campylobacter/isolamento & purificação , Animais , DNA Bacteriano/genética , Suínos , Ruminantes/microbiologiaRESUMO
Multivariate models were developed to classify cellulose nanofibril (CNF) fibrillation by a quality index from near infrared (NIR) spectra. Commercial pulps of Eucalyptus spp. were used to produce cellulose nanofibrils by means of a fibrillator mill. After each of the five passes through the mill, samples were collected and analyzed for energy consumption and fiber classification. As a standard, pulps were oxidized with TEMPO reagent followed by a single pass through the mill to compare the resulting quality of CNFs produced by each method. NIR spectra of CNFs were associated with quality indices determined by conventional laboratory analyses that included morphology, turbidity, mechanical properties, X-ray diffraction and quality index measurements. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were applied to the spectral and experimental data. Fibrillator milling to obtain CNFs was efficient and resulted in gel formation following the third pass through the mill. NIR spectroscopy combined with PLS-DA was used successfully to create a model to classify quality of CNFs with 96 % certainty in 3 wt% solutions. These findings suggest that NIR spectroscopy holds promise for estimating CNF quality in suspension, particularly in real-time industrial applications where reliable estimates are crucial.
Assuntos
Eucalyptus , Nanofibras , Celulose/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Eucalyptus/química , Carboidratos , Difração de Raios X , Nanofibras/químicaRESUMO
The specificity of activated carbon (AC) can be targeted by pretreatment of the precursors and/or activation conditions. Piassava (Leopoldinia piassaba and Attalea funifera Martius) are fibrous palms used to make brushes, and other products. Consolidated harvest and production residues provide economic feasibility for producing AC, a value-added product from forest and industrial residues. Corona electrical discharge and extraction pretreatments prior to AC activation were investigated to determine benefits from residue pretreatment. The resulting AC samples were characterized using elemental analyses and FTIR and tested for efficacy using methylene blue and phenol. All resulting AC had good adsorbent properties. Extraction as a pretreatment improved functionality in AC properties over Corona electrical discharge pretreatment. Due to higher lignin content, AC from L. piassaba had better properties than that from A. funifera.
RESUMO
This paper provides proof of concept that activated carbon (AC) may be readily produced using limited conversion methods and resources from sawdust of massaranduba (Manilkara huberi) wood, thereby obtaining value-added products. Sawdust was sieved and heat-treated in an oxygen-free muffle furnace at 500 °C to produce charcoal. The charcoal was activated in a tubular electric furnace at 850 °C while being purged with CO2 gas. Microstructural, thermal and physical properties of the three components: sawdust, charcoal and AC were compared by means of field emission scanning electron microscopy (FESEM), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), density and water adsorption/desorption measurements. The resulting AC had a large surface area as measured by Brunauer-Emmett-Teller (BET) comparable to other such values found in the literature. The large surface area was due to pore development at the microstructural level as shown by FESEM. XRD illustrated that sawdust had a semi-crystalline structure whereas charcoal and AC evidenced mostly amorphous structures. TGA and DSC showed that AC had high reactivity to moisture compared to sawdust and charcoal.
RESUMO
The objective of this work was to prepare bio-based thin films and evaluate the additions of magnetite and glycerol on the physico-chemical (flexibility, wettability and barrier properties) and dielectric properties of cellulose/chitosan-based films. The films were prepared by solution casting and presented a suitable dispersion of the constituents observed by SEM and FTIR. The films were thermally stable up to 150 °C and had a higher flexibility, wettability and lower barrier properties upon addition of glycerol. The calculated dielectric constant (εr) for the composite films was based on measurements of capacitance, at 100 and 1000 Hz, with the additions of magnetite and glycerol more than doubling the εr increasing the charge storage capacity. The bio-based thin films have potential to be used as insulators in capacitors on the production of green electronics thus, reducing toxic and nonrenewable e-waste generation.
Assuntos
Celulose/química , Óxido Ferroso-Férrico/química , Nanofibras/química , Quitosana/química , Módulo de Elasticidade , Capacitância Elétrica , Glicerol/química , Química Verde/instrumentação , Fenômenos Magnéticos , Resistência à Tração , MolhabilidadeRESUMO
The aim of this study was to improve storage characteristics of brown rice by using infrared radiation drying (IRD) through comparison with hot air drying (HAD) and ambient air drying (AAD). After heating by IR from 20⯰C to 60⯰C within 58â¯s, 2.17 percentage points moisture of rough rice (initial moisture content is 25.0⯱â¯0.2% in dry basis) were removed without adverse effect on germination capacity of husked brown rice. Compared with AAD, IRD slowed down the increase in yellowness, water uptake and volume expansion ratio of brown rice by 47.9%, 41.0% and 37.9% after four months of storage, and decreased the temperature range and enthalpy of gelatinization, the peak and breakdown viscosities. These changes might due to the higher stabilization effect of IRD on the microstructure and thermal properties of proteins and starch granules than AAD. IRD is an effective method to improve storage stability of brown rice.
Assuntos
Dessecação/métodos , Armazenamento de Alimentos/métodos , Oryza/química , Cor , Culinária , Gelatina/química , Germinação , Raios Infravermelhos , Termodinâmica , Viscosidade , ÁguaRESUMO
Carvacrol is a volatile monoterpenic phenol and main component of oregano essential oil that shows nonspecific antimicrobial activity against foodborne pathogenic bacteria. Fish-skin gelatin (FSG) nanofibers encapsulating carvacrol (15%, 20%, 25%, and 30%, w/w FSG) were successfully prepared via solution blow-spinning (SBS) technique using lecithin (2.475% wb) as the surfactant. FSG emulsions with lower carvacrol ratios (5% and 10%) showed higher values in particle size and surface tension as well as lower values in viscosity and modulus, which led to failure of maintaining nanofibers shape. The formed carvacrol-FSG nanofibers showed round and smooth morphologies with average fiber diameters ranging from 103.2 to 138.1 nm as the carvacrol ratio increased from 15% to 30%. Carvacrol was evenly dispersed within the interior of nanofiber matrix. All carvacrol-FSG nanofibers showed inhibitive effects against the growth of Escherichia coli, Salmonella enterica, and Listeria monocytogenes. Moreover, nanofibers with lower carvacrol ratios showed bigger inhibition zones for E. coli and L. monocytogenes (20 mm compared with 12.5 mm for lowest to highest carvacrol ratios, respectively). Nanofibers stored at 20 °C (51% RH) showed better retention (40% to 60%) for carvacrol during the first 4 weeks of storage, while nanofibers stored at 2 °C (70% RH) showed better retention (10% to 30%) at the end of storage. PRACTICAL APPLICATION: Results obtained in the study may help with antimicrobial carvacrol addition levels for gelatin fiber preparation using solution blow spinning (SBS) method. SBS gelatin fibers with added antimicrobials have potential applications for food packaging and medical wound dressing.
Assuntos
Bactérias/efeitos dos fármacos , Proteínas de Peixes/farmacologia , Conservação de Alimentos/métodos , Gelatina/farmacologia , Monoterpenos/farmacologia , Nanofibras , Óleos Voláteis/farmacologia , Animais , Antibacterianos/farmacologia , Cimenos , Escherichia coli/efeitos dos fármacos , Peixes , Microbiologia de Alimentos , Embalagem de Alimentos/métodos , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Listeria monocytogenes/efeitos dos fármacos , Monoterpenos/administração & dosagem , Óleos Voláteis/administração & dosagem , Origanum/química , Extratos Vegetais/farmacologia , Salmonella enterica/efeitos dos fármacos , Pele , Soluções/química , ViscosidadeRESUMO
Aflatoxins are toxic and carcinogenic secondary metabolites produced primarily by the filamentous fungi Aspergillus flavus and Aspergillus parasiticus and cause toxin contamination in food chain worldwide. Aspergillus oryzae and Aspergillus sojae are highly valued as koji molds in the traditional preparation of fermented foods, such as miso, sake, and shoyu. Koji mold species are generally perceived of as being nontoxigenic and are generally recognized as safe (GRAS). Fungal isolates were collected from a California orchard and a few were initially identified to be A. sojae using ß-tubulin gene sequences blasted against NCBI data base. These new isolates all produced aflatoxins B1, B2, G1, and G2 and were named as Pistachio Winter Experiment (PWE) strains. Thus, it is very important to further characterize these strains for food safety purposes. The full length of aflR gene of these new isolates was sequenced. Comparison of aflR DNA sequences of PWE, A. parasiticus and A. sojae, showed that the aflatoxigenic PWE strains had the six base insertion (CTCATG) similar to domesticated A. sojae, but a pre-termination codon TGA at nucleotide positions 1153-1155 was absent due to a nucleotide codon change from T to C. Colony morphology and scanning microscopic imaging of spore surfaces showed similarity of PWE strains to both A. parasiticus and A. sojae. Concordance analysis of multi locus DNA sequences indicated that PWE strains were closely linked between A. parasiticus and A. sojae. The finding documented the first report that such unique strains have been found in North America and in the world.
Assuntos
Aspergillus/genética , Aspergillus/isolamento & purificação , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Mutagênese Insercional , Fatores de Transcrição/genética , Aflatoxinas/análise , Aflatoxinas/genética , Aflatoxinas/metabolismo , Aspergillus/classificação , Aspergillus/ultraestrutura , Sequência de Bases , California , Proteínas de Ligação a DNA/química , Proteínas Fúngicas/química , Indóis/análise , Indóis/metabolismo , Tipagem de Sequências Multilocus , Fenótipo , Filogenia , Análise de Sequência de DNA , Esporos Fúngicos , Fatores de Transcrição/químicaRESUMO
Cinnamaldehyde, a natural preservative that can non-specifically deactivate foodborne pathogens, was successfully incorporated into fish skin gelatin (FSG) solutions and blow spun into uniform nanofibers. The effects of cinnamaldehyde ratios (5-30%, w/w FSG) on physicochemical properties of fiber-forming emulsions (FFEs) and their nanofibers were investigated. Higher ratios resulted in higher values in particle size and viscosity of FFEs, as well as higher values in diameter of nanofibers. Loss of cinnamaldehyde was observed during solution blow spinning (SBS) process and cinnamaldehyde was mainly located on the surface of resultant nanofibers. Nanofibers all showed antibacterial activity by direct diffusion and vapor release against Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes. Inhibition zones increased as cinnamaldehyde ratio increased. Nanofibers showed larger inhibition effects than films prepared by casting method when S. typhimurium was exposed to the released cinnamaldehyde vapor, although films had higher remaining cinnamaldehyde than nanofibers after preparation. Lower temperature was favorable for cinnamaldehyde retention, and nanofibers added with 10% cinnamaldehyde ratio showed the highest retention over eight-weeks of storage. Results suggest that FSG nanofibers can be prepared by SBS as carriers for antimicrobials.
Assuntos
Acroleína/análogos & derivados , Gelatina/química , Nanofibras/química , Nanotecnologia/métodos , Pele/química , Acroleína/química , Animais , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Emulsões , Peixes , Nanofibras/ultraestrutura , Tamanho da Partícula , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Tensão Superficial , ViscosidadeRESUMO
Due to a large and growing collection of genomic and experimental resources, Brachypodium distachyon has emerged as a powerful experimental model for the grasses. To add to these resources we sequenced 21 165 T-DNA lines, 15 569 of which were produced in this study. This increased the number of unique insertion sites in the T-DNA collection by 21 078, bringing the overall total to 26 112. Thirty-seven per cent (9754) of these insertion sites are within genes (including untranslated regions and introns) and 28% (7217) are within 500 bp of a gene. Approximately 31% of the genes in the v.2.1 annotation have been tagged in this population. To demonstrate the utility of this collection, we phenotypically characterized six T-DNA lines with insertions in genes previously shown in other systems to be involved in cellulose biosynthesis, hemicellulose biosynthesis, secondary cell wall development, DNA damage repair, wax biosynthesis and chloroplast synthesis. In all cases, the phenotypes observed supported previous studies, demonstrating the utility of this collection for plant functional genomics. The Brachypodium T-DNA collection can be accessed at http://jgi.doe.gov/our-science/science-programs/plant-genomics/brachypodium/brachypodium-t-dna-collection/.
Assuntos
Brachypodium/genética , DNA Bacteriano/genética , Plantas Geneticamente Modificadas/genética , Dano ao DNA/genética , Genoma de Planta/genética , Genômica , Íntrons/genética , Mutagênese InsercionalRESUMO
A hybrid catalyst was prepared using cellulose nanofibrils and magnetite to degrade organic compounds. Cellulose nanofibrils were isolated by mechanical defibrillation producing a suspension used as a matrix for magnetite particles. The solution of nanofibrils and magnetite was dried and milled resulting in a catalyst with a 1:1 ratio of cellulose and magnetite that was chemically and physically characterized using light, scanning electron and transmission electron microscopies, specific surface area analysis, vibrating sample magnetometry, thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffraction, catalytic potential and degradation kinetics. Results showed good dispersion of the active phase, magnetite, in the mat of cellulosic nanofibrils. Leaching and re-use tests showed that catalytic activity was not lost over several cycles. The hybrid material produced was tested for degradation of methylene blue dye in Fenton-like reactions resulting in a potential catalyst for use in degradation of organic compounds.
Assuntos
Celulose/química , Óxido Ferroso-Férrico/química , Resíduos Industriais , Têxteis , Purificação da Água , Catálise , Nanopartículas , Difração de Raios XRESUMO
Zein fibers were successfully fabricated via solution blow spinning (SBS) using acetic acid as solvent. Surface tension, viscosity and modulus of zein solutions were respectively determined by force tensiometer and rheometer. Increases of these properties were observed with an increase of concentration from 20% to 35% (w/w). The fabrication conditions of zein fibers were initially investigated as a function of zein concentration (25% to 35% w/w), feed rate (0.04 to 0.1 mL/min) and air pressure (0.28 to 0.62 MPa). The average fiber diameter (AFD) ranged from 174 to 9595 nm based on scanning electron microscopy (SEM). A Box-Behnken experimental design (BBD) was further performed to identify and quantify the significance of above parameters. The statistical analysis showed that the linear coefficient of concentration, the quadratic term of concentration as well as the interaction between concentration and air pressure were demonstrated statistically significant. Optimal conditions, with an AFD of 138 nm, could be obtained in the SBS of zein fibers by combining a concentration of 23% (w/w), a feed rate of 0.04 mL/min and an air pressure of 0.38 MPa. The moisture sorption capacity of fibers increased slightly as AFD decreased from â¼550 to â¼200 nm, with an increase of BET surface area from 116.5 to 140.0 m2 /g.
Assuntos
Manipulação de Alimentos , Zeína/química , Anti-Infecciosos/química , Antioxidantes/química , Preparações de Ação Retardada/química , Fenômenos Mecânicos , Microscopia Eletrônica de Varredura , Reologia , Soluções , ViscosidadeRESUMO
The present study reports on the development of hybrid poly(lactic acid) (PLA) fibres loaded with highly crystalline bacterial cellulose nanowhiskers (BCNW) by the novel solution blow spinning method. Furthermore, fibres with antimicrobial properties were generated by incorporating carvacrol and THC as antimicrobial agents and the biocide effect against Listeria monocytogenes was studied. Initially, PLA blow spun fibres containing BCNW were optimized in terms of morphology and thermal properties. The addition of BCNW was seen to significantly increase the viscosity and surface tension of solutions, restricting the capacity to form fibres for concentrations greater than 30 wt.-% BCNW. 15 wt.-% BCNW was selected as the optimum nanofiller loading as it led to the most uniform fibres morphology, with BCNW homogeneously distributed along the fibres' axis. Subsequently, carvacrol and THC were incorporated into the fibres to confer them with antimicrobial properties, although the hydrophobic PLA matrix did not provide an efficient release of the antimicrobials. Thus, hydrophilic substances were added in order to trigger the antimicrobials release through water sorption mechanisms. The addition of the BCNW filler was not seen to significantly increase the antimicrobial capacity of the fibres by itself and, hence, gelatin was added to help promoting further the hydrophylicity and biocide performance of the fibres. Nevertheless, for the more hydrophilic THC, the biocide capacity of the fibres with gelatin was accentuated further by the presence of the BCNW.
Assuntos
Anti-Infecciosos/química , Ácido Láctico/química , Nanofibras/química , Nanotecnologia/métodos , Polímeros/química , Anti-Infecciosos/farmacologia , Varredura Diferencial de Calorimetria , Celulose/química , Celulose/metabolismo , Cimenos , Gluconacetobacter xylinus/química , Gluconacetobacter xylinus/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Monoterpenos/química , Monoterpenos/farmacologia , Poliésteres , ViscosidadeRESUMO
BACKGROUND: Controlled-release formulations of bioactive agents are of increasing interest for effective pest control. Volatile 2-heptanone is a bioactive agent that has shown potential as a pesticide. The aim of this study was to investigate the kinetics of release of 2-heptanone incorporated into lipid films or composite solid lipid particle (SLP) films. RESULTS: Effective 2-heptanone diffusivity was estimated to be between 0.1 and 2.5 mm(2) day(-1) during the first week and between 0.05 and 0.1 mm(2) day(-1) during the next 5 weeks. The films that showed better retention of 2-heptanone were the paraffin lipid films. Inclusion of SLPs into paraffin films increased the release rate of 2-heptanone, mainly owing to a decrease in the film firmness as the composite SLP film became less crystalline and more brittle. In contrast, SLPs decreased the kinetics of 2-heptanone release in Acetem films owing to an increase in the film firmness. CONCLUSIONS: The results indicated that the use of SLPs as a method for controlled release can improve the delivery of the natural pesticide 2-heptanone if the SLPs have good compatibility with the matrix, leading to an increase in firmness of the films without increasing their porosity. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Assuntos
Química Farmacêutica/métodos , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Cetonas/química , Lipídeos/química , Química Farmacêutica/instrumentação , Difusão , CinéticaRESUMO
During rice milling, the bran and germ are successively removed from the caryopsis (kernel). Because bran and germ contain large quantities of lipid, the amount of lipid remaining on the kernel surface may be used as a method for the assessment of milling quality. Bulk samples of rice pureline varieties and an experimental hybrid were milled for 0, 10, 20, 30, and 40 s. Scanning electron microscopy (SEM) revealed that brown rice kernels had large contours of linear protuberances and depressions running lengthwise along the kernel surface. The protuberances were abraded successively during milling, but varying amounts of material remained in the depressions. Light microscopy combined with the lipid-specific probes Nile Blue A or Sudan Black B demonstrated that the material in the depressions observed with SEM was lipid. Sections of whole, milled rice kernels, prepared using a modified sectioning technique and stained with Nile Blue A, showed that portions of the embryo remain after milling and that lipid is located on or near the surface of the kernel. Differences in quantity and distribution of residual lipid as milling duration increased were documented photographically to indicate the extent to which the bran and embryo components were removed during milling. This paper provides proof of concept that residual lipid is a robust measure of the degree of milling.
Assuntos
Manipulação de Alimentos/métodos , Microscopia Eletrônica de Varredura , Oryza , Sementes/química , Sementes/ultraestrutura , Lipídeos/análiseRESUMO
Metabolic engineering to enhance production of isoprenoid metabolites for industrial and medical purposes is an important goal. The substrate for isoprenoid synthesis in plants is produced by the mevalonate pathway (MEV) in the cytosol and by the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway in plastids. A multi-gene approach was employed to insert the entire cytosolic MEV pathway into the tobacco chloroplast genome. Molecular analysis confirmed the site-specific insertion of seven transgenes and homoplasmy. Functionality was demonstrated by unimpeded growth on fosmidomycin, which specifically inhibits the MEP pathway. Transplastomic plants containing the MEV pathway genes accumulated higher levels of mevalonate, carotenoids, squalene, sterols, and triacyglycerols than control plants. This is the first time an entire eukaryotic pathway with six enzymes has been transplastomically expressed in plants. Thus, we have developed an important tool to redirect metabolic fluxes in the isoprenoid biosynthesis pathway and a viable multigene strategy for engineering metabolism in plants.
Assuntos
Cloroplastos/metabolismo , Citoplasma/metabolismo , Ácido Mevalônico/metabolismo , Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Terpenos/metabolismo , Cloroplastos/genética , Citoplasma/genética , Fosfomicina/análogos & derivados , Fosfomicina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Nicotiana/genéticaRESUMO
High temperature during grain fill reduces wheat yield and alters flour quality. Starchy endosperm cell morphology was investigated in wheat ( Triticum aestivum L. 'Butte 86') grain produced under a 24/17 or 37/28 °C day/night regimen imposed from anthesis to maturity to identify changes in cell structure related to the functional properties of flour. The duration of grain fill decreased substantially under the 37/28 °C regimen, but, like the 24/17 °C regimen, endosperm cells in the mature grain were packed with starch and protein. However, A-type starch granules increased in number, decreased in size, and exhibited pitting; B-type granules decreased in both number and size; and the protein matrix was proportionally greater in endosperm cells of grain produced under the 37/28 °C regimen. Such changes in starch granule number, size, and structure and in protein amount are known to contribute to variations in wheat flour quality.
Assuntos
Endosperma/metabolismo , Proteínas de Plantas/metabolismo , Amido/metabolismo , Triticum/crescimento & desenvolvimento , Endosperma/química , Endosperma/crescimento & desenvolvimento , Endosperma/ultraestrutura , Temperatura Alta , Microscopia Eletrônica de Varredura , Proteínas de Plantas/química , Conformação Proteica , Amido/química , Triticum/química , Triticum/metabolismo , Triticum/ultraestruturaRESUMO
Catastrophic phase inversion (CPI) was used as a low-energy emulsification method to prepare oil-in-water (O/W) nanoemulsions in a lipid (Acetem)/water/nonionic surfactant (Tween 60) system. CPIs in which water-in-oil emulsions (W/O) are transformed into oil-in-water emulsions (O/W) were induced by changes in the phase ratio. Dynamic phase inversion emulsification was achieved by slowly increasing the water volume fraction (fw) to obtain O/W emulsions from water in oil emulsions. Composition and processing variables were optimized to minimize droplet size and polydispersity index (PdI). It was found that addition of the continuous phase to the dispersed phase following the standard CPI procedure resulted in the formation of oil droplets with diameters of 100-200 nm. Droplet size distribution during CPI and emulsification time depended on stirring speed and surfactant concentration. Droplet sizes in the inverted emulsions were compared to those obtained by direct emulsification: The process time to reach droplet sizes of around 100 nm was reduced by 12 times by using CPI emulsification. The Acetem/water nanoemulsion was also used as a carrier to incorporate oregano and cinnamon essential oils into soy protein edible films. The resulting composite films containing oregano oil showed better moisture barrier and mechanical properties compared to soy protein films.
Assuntos
Emulsões/química , Tecnologia de Alimentos/métodos , Tensoativos/química , Tamanho da Partícula , Óleos de Plantas/química , Proteínas de Soja/químicaRESUMO
It has been stated that hydroxypropyl methyl cellulose (HPMC) based films have promising applications in the food industry because of their environmental appeal, low cost, flexibility and transparency. Nevertheless, their mechanical and moisture barrier properties should be improved. The aim of this work was to enhance these properties by reinforcing the films with microcrystalline cellulose (MCC) at the nano scale level. Three sizes of MCC nanoparticles were incorporated into HPMC edible films at different concentrations. Identical MCC nanoparticles were lipid coated (LC) prior to casting into HPMC/LC-MCC composite films. The films were examined for mechanical and moisture barrier properties verifying how the addition of cellulose nanoparticles affected the water affinities (water adsorption/desorption isotherms) and the diffusion coefficients. The expected reinforcing effect of the MCC was observed: HPMC/MCC and HPMC/LC-MCC films showed up to 53% and 48% increase, respectively, in tensile strength values in comparison with unfilled HPMC films. Furthermore, addition of unmodified MCC nanoparticles reduced the moisture permeability up to 40% and use of LC-MCC reduced this value up to 50%. Water vapor permeability was mainly influenced by the differences in water solubility of different composite films since, in spite of the increase in water diffusivity values with the incorporation of MCC to HPMC films, better moisture barrier properties were achieved for HPMC/MCC and HPMC/LC-MCC composite films than for HPMC films.