Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
JMIR Form Res ; 8: e58465, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922681

RESUMO

BACKGROUND: Age-related vision changes significantly contribute to fatal crashes at night among older drivers. However, the effects of lighting conditions on age-related vision changes and associated driving performance remain unclear. OBJECTIVE: This pilot study examined the associations between visual function and driving performance assessed by a high-fidelity driving simulator among drivers 60 and older across 3 lighting conditions: daytime (photopic), nighttime (mesopic), and nighttime with glare. METHODS: Active drivers aged 60 years or older participated in visual function assessments and simulated driving on a high-fidelity driving simulator. Visual acuity (VA), contrast sensitivity function (CSF), and visual field map (VFM) were measured using quantitative VA, quantitative CSF, and quantitative VFM procedures under photopic and mesopic conditions. VA and CSF were also obtained in the presence of glare in the mesopic condition. Two summary metrics, the area under the log CSF (AULCSF) and volume under the surface of VFM (VUSVFM), quantified CSF and VFM. Driving performance measures (average speed, SD of speed [SDspeed], SD of lane position (SDLP), and reaction time) were assessed under daytime, nighttime, and nighttime with glare conditions. Pearson correlations determined the associations between visual function and driving performance across the 3 lighting conditions. RESULTS: Of the 20 drivers included, the average age was 70.3 years; 55% were male. Poor photopic VA was significantly correlated with greater SDspeed (r=0.26; P<.001) and greater SDLP (r=0.31; P<.001). Poor photopic AULCSF was correlated with greater SDLP (r=-0.22; P=.01). Poor mesopic VUSFVM was significantly correlated with slower average speed (r=-0.24; P=.007), larger SDspeed (r=-0.19; P=.04), greater SDLP (r=-0.22; P=.007), and longer reaction times (r=-0.22; P=.04) while driving at night. For functional vision in the mesopic condition with glare, poor VA was significantly correlated with longer reaction times (r=0.21; P=.046) while driving at night with glare; poor AULCSF was significantly correlated with slower speed (r=-0.32; P<.001), greater SDLP (r=-0.26; P=.001) and longer reaction times (r=-0.2; P=.04) while driving at night with glare. No other significant correlations were observed between visual function and driving performance under the same lighting conditions. CONCLUSIONS: Visual functions differentially affect driving performance in different lighting conditions among older drivers, with more substantial impacts on driving during nighttime, especially in glare. Additional research with larger sample sizes is needed to confirm these results.

2.
Inj Epidemiol ; 11(1): 10, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481266

RESUMO

BACKGROUND: Mild traumatic brain injury (mTBI) and traffic-related injuries are two major public health problems disproportionately affecting young people. Young drivers, whose driving skills are still developing, are particularly vulnerable to impaired driving due to brain injuries. Despite this, there is a paucity of research on how mTBI impacts driving and when it is safe to return to drive after an mTBI. This paper describes the protocol of the study, R2DRV, Longitudinal Assessment of Driving After Mild TBI in Young Drivers, which examines the trajectory of simulated driving performance and self-reported driving behaviors from acutely post-injury to symptom resolution among young drivers with mTBI compared to matched healthy drivers. Additionally, this study investigates the associations of acute post-injury neurocognitive function and cognitive load with driving among young drivers with and without mTBI. METHODS: A total of 200 young drivers (ages 16 to 24) are enrolled from two study sites, including 100 (50 per site) with a physician-confirmed isolated mTBI, along with 100 (50 per site) healthy drivers without a history of TBI matched 1:1 for age, sex, driving experience, and athlete status. The study assesses primary driving outcomes using two approaches: (1) high-fidelity driving simulators to evaluate driving performance across four experimental study conditions at multiple time points (within 96 h of injury and weekly until symptom resolution or 8 weeks post-injury); (2) daily self-report surveys on real-world driving behaviors completed by all participants. DISCUSSION: This study will fill critical knowledge gaps by longitudinally assessing driving performance and behaviors in young drivers with mTBI, as compared to matched healthy drivers, from acutely post-injury to symptom resolution. The research strategy enables evaluating how increased cognitive load may exacerbate the effects of mTBI on driving, and how post-mTBI neurocognitive deficits may impact the driving ability of young drivers. Findings will be shared through scientific conferences, peer-reviewed journals, and media outreach to care providers and the public.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...