Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Mol Pharm ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088690

RESUMO

Nanoparticle-loaded dissolving microneedles (DMNs) have attracted increasing attention due to their ability to provide high drug loading, adjustable drug release behavior, and enhanced therapeutic efficiency. However, such delivery systems still face unsatisfied drug delivery efficiency due to insufficient driving force to promote nanoparticle penetration and the lack of in vivo fate studies to guide formulation design. Herein, an aggregation-caused quenching (ACQ) probe (P4) was encapsulated in l-arginine (l-Arg)-based nanomicelles, which was further formulated into nitric oxide (NO)-propelled nanomicelle-integrated DMNs (P4/l-Arg NMs@DMNs) to investigate their biological fate. The P4 probe could emit intense fluorescence signals in intact nanomicelles, while quenching with the dissociation of nanomicelles, providing a "distinguishable" method for tracking the fate of nanomicelles at a different status. l-Arg was demonstrated to self-generate NO under the tumor microenvironment with excessive reactive oxygen species (ROS), providing a pneumatic force to promote the penetration of nanomicelles in both three-dimensional (3D)-cultured tumor cells and melanoma-bearing mice. Compared with passive microneedles (P4 NMs@DMNs) without a NO propellant, the P4/l-Arg NMs@DMNs possessed a good NO production performance and higher nanoparticle penetration capacity. In conclusion, this study offered an ACQ probe-based biological fate tracking approach to demonstrate the potential of NO-propelled nanoparticle-loaded DMNs in penetration enhancement for topical tumor therapy.

2.
Int J Pharm ; 663: 124547, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097155

RESUMO

Microneedles (MNs) have gained increasing attention in the biomedical field, owing to their notable advantages over injectable and transdermal preparations. The mechanical properties of MNs are the key to determine whether MNs can puncture the skin for efficient drug delivery and therapeutic purposes. However, there is still lacking of a systemic summary on how to improve the mechanical properties of MNs. Herein, this review mainly analyzes the key factors affecting the mechanical properties of MNs from the theoretical point of view and puts forward improvement approaches. First, we analyzed the major stresses exerted on the MNs during skin puncture and described general methods to evaluate the mechanical properties of MNs. We then provided detail examples to elucidate how the physicochemical properties of single polymer, formulation compositions, and geometric parameters affected the mechanical properties of MNs. Overall, the mechanical strength of MNs can be enhanced by tuning the crosslinking density, crystallinity degree, and molecular weight of single polymer, introducing polysaccharides and nano-microparticles as reinforcers to form complex with polymer, and optimizing the geometric parameters of MNs. Therefore, this review will provide critical guidance on how to fabricate MNs with robust mechanical strength for successful transdermal drug delivery.

3.
J Pharm Anal ; 14(7): 100960, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39135963

RESUMO

Ferroptosis is a nonapoptotic form of cell death and differs considerably from the well-known forms of cell death in terms of cell morphology, genetics, and biochemistry. The three primary pathways for cell ferroptosis are system Xc-/glutathione peroxidase 4 (GPX4), lipid metabolism, and ferric metabolism. Since the discovery of ferroptosis, mounting evidence has revealed its critical regulatory role in several diseases, especially as a novel potential target for cancer therapy, thereby attracting increasing attention in the fields of tumor biology and anti-tumor therapy. Accordingly, broad prospects exist for identifying ferroptosis as a potential therapeutic target. In this review, we aimed to systematically summarize the activation and defense mechanisms of ferroptosis, highlight the therapeutic targets, and discuss the design of nanomedicines for ferroptosis regulation. In addition, we opted to present the advantages and disadvantages of current ferroptosis research and provide an optimistic vision of future directions in related fields. Overall, we aim to provide new ideas for further ferroptosis research and inspire new strategies for disease diagnosis and treatment.

4.
Expert Opin Drug Deliv ; : 1-12, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39096307

RESUMO

INTRODUCTION: Cancer vaccines (protein and peptide, DNA, mRNA, and tumor cell) have achieved remarkable success in the treatment of cancer. In particular, advances in the design and manufacture of biomaterials have made it possible to control the presentation and delivery of vaccine components to immune cells. AREAS COVERED: This review summarizes findings from major databases, including PubMed, Scopus, and Web of Science, focusing on articles published between 2005 and 2024 that discuss biomaterials in cancer vaccine delivery. EXPERT OPINION: The development of cancer vaccines is hindered by several bottlenecks, including low immunogenicity, instability of vaccine components, and challenges in evaluating their clinical efficacy. To transform preclinical successes into viable treatments, it is essential to pursue continued innovation, collaborative research, and address issues related to scalability, regulatory pathways, and clinical validation, ultimately improving outcomes against cancer.

5.
Int J Pharm ; : 124582, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142466

RESUMO

Chemotherapy agents for lung cancer often cause apoptotic resistance in cells, leading to suboptimal therapeutic outcomes. FIN56 can be a potential treatment for lung cancer as it induces non-apoptotic cell death, namely ferroptosis. However, a bottleneck exists in FIN56-induced ferroptosis treatment; specifically, FIN56 fails to induce sufficient oxidative stress and may even trigger the defense system against ferroptosis, resulting in poor therapeutic efficacy. To overcome this, this study proposed a strategy of co-delivering FIN56 and piperlongumine to enhance the ferroptosis treatment effect by increasing oxidative stress and connecting with the autophagy pathway. FIN56 and piperlongumine were encapsulated into silk fibroin-based nano-disruptors, named FP@SFN. Characterization results showed that the particle size of FP@SFN was in the nanometer range and the distribution was uniform. Both in vivo and in vitro studies demonstrated that FP@SFN could effectively eliminate A549 cells and inhibit subcutaneous lung cancer tumors. Notably, ferroptosis and autophagy were identified as the main cell death pathways through which the nano-disruptors increased oxidative stress and facilitated cell membrane rupture. In conclusion, nano-disruptors can effectively enhance the therapeutic effect of ferroptosis treatment for lung cancer through the ferroptosis-autophagy synergy mechanism, providing a reference for the development of related therapeutics.

6.
J Control Release ; 373: 599-616, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39074587

RESUMO

Ferroptosis-mediated multimodal therapy has emerged as a promising strategy for tumor elimination, with lipid peroxide (LPO) playing a pivotal role. However, the therapeutic efficiency is limited due to insufficient intracellular levels of free fatty acids (FFA), which severely hinder the production of LPO. To address this limitation, we proposed a lipophagy strategy aimed at degrading lipid droplets (LDs) to release FFA, serving as the essential "fuel" for LPO production. In this study, the lipophagy inducer epigallocatechin gallate (EGCG) was self-assembled with reactive oxygen species (ROS)-producer phenethyl isothiocyanate (PEITC) mediated by Fe2+ to form EFP nanocapsules, which were further integrated into microneedle patches to form a "all-in-one" EFP@MNs. The metal-polyphenol network structure of EFP endow it with photothermal therapy capacity. Upon insertion into tumors, the released EFP nanocapsules were demonstrated to induce lipophagy through metabolic disturbance, thereby promoting LPO production and facilitating ferroptosis. When combined with photothermal therapy, this approach significantly remolded the tumor immune microenvironment by driving tumor-associated macrophages toward M1 phenotype and enhancing dendritic cell maturation. Encouragingly, in conjunction with αPD-L1 treatment, the proposed EFP@MNs exhibited remarkable efficacy in tumor ablation. Our study presents a versatile framework for utilizing microneedle patches to power ferroptosis-mediated multimodal therapy.

7.
Adv Healthc Mater ; : e2400664, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039988

RESUMO

The development of narrow-spectrum antimicrobial agents is paramount for swiftly eradicating pathogenic bacteria, mitigating the onset of drug resistance, and preserving the homeostasis of bacterial microbiota in tissues. Owing to the limited affinity between the hydrophobic lipid bilayer interior of bacterial cells and most hydrophilic, polar peptides, the construction of a distinctive class of four-armed host-defense peptides/peptidomimetics (HDPs) is proposed with enhanced specificity and membrane perturbation capability against Pseudomonas aeruginosa by incorporating imidazole groups. These groups demonstrate substantial affinity for unsaturated phospholipids, which are predominantly expressed in the cell membrane of P. aeruginosa, thereby enabling HDPs to exhibit narrow-spectrum activity against this bacterium. Computational simulations and experimental investigations have corroborated that the imidazole-rich, four-armed peptidomimetics exhibit notable selectivity toward bacteria over mammalian cells. Among them, 4H10, characterized by its abundant and densely distributed imidazole groups, exhibits impressive activity against various clinically isolated P. aeruginosa strains. Moreover, 4H10 has demonstrated potential as an antibiotic adjuvant, enhancing doxycycline accumulation and exerting effects on intracellular targets by efficiently disrupting bacterial cell membranes. Consequently, the hydrogel composed of 4H10 and doxycycline emerged as a promising topical agent, significantly diminishing the skin P. aeruginosa burden by 97.1% within 2 days while inducing minimal local and systemic toxicity.

8.
Expert Opin Drug Deliv ; 21(6): 965-974, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38962819

RESUMO

OBJECTIVE: Dissolving microneedles (DMNs) have shown great potential for transdermal drug delivery due to their excellent skin-penetrating ability and combination with nanocarriers (NCs) can realize targeted drug delivery. The objective of this study was to investigate the impact of microneedle dissolving rate on the in vivo fate of NC-loaded DMNs, which would facilitate the clinical translation of such systems. METHODS: Solid lipid nanoparticles (SLNs) were selected as the model NC for loading in DMNs, which were labeled by P4 probes with aggregation-quenching properties. Sodium hyaluronate acid (HA) and chitosan (CS), with different aqueous dissolving rates, were chosen as model tip materials. The effects of needle dissolving rate on the in vivo fate of NC-loaded DMNs was investigated by tracking the distribution of fluorescence signals after transdermal exposure. RESULTS: P4 SLNs achieved a deeper diffusion depth of 180 µm in DMN-HA with a faster dissolution rate, while the diffusion depth in DMN-CS with a slower dissolution rate was lower (140 µm). The in vivo experiments demonstrated that P4 SLNs had a T1/2 value of 12.14 h in DMN-HA, whilst a longer retention time was found in DMN-CS, with a T1/2 of 13.12 h. CONCLUSIONS: This study confirmed that the in vivo diffusion rate of NC-loaded DMNs was determined by the dissolving rate of DMNs materials and provided valuable guidance for the design and development of NC-loaded DMNs in the future.


Assuntos
Administração Cutânea , Quitosana , Sistemas de Liberação de Medicamentos , Ácido Hialurônico , Nanopartículas , Agulhas , Animais , Ácido Hialurônico/química , Ácido Hialurônico/administração & dosagem , Quitosana/química , Portadores de Fármacos/química , Solubilidade , Lipídeos/química , Microinjeções , Absorção Cutânea , Pele/metabolismo , Masculino , Ratos Sprague-Dawley , Ratos , Lipossomos
9.
J Control Release ; 372: 43-58, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866243

RESUMO

Chronic infections often involve biofilm-based bacteria, in which the biofilm results in significant resistance against antimicrobial agents and prevents eradication of the infection. The physicochemical barrier presented by the biofilm matrix is a major impediment to the delivery of many antibiotics. Previously, PEGylation has been shown to improve antibiotic penetration into biofilms in vitro. In these studies, PEGylating tobramycin was investigated both in vitro and in vivo. Two distinct PEGylated tobramycin molecules were synthesized (mPEG-SA-Tob and mPEG-AA-Tob). Then, in a P. aeruginosa biofilm in vitro model, we found that mPEG-SA-Tob can operate as a prodrug and showed 7 times more effectiveness than tobramycin (MIC80: 14 µM vs.100 µM). This improved biofilm eradication is attributable to the fact that mPEG-SA-Tob can aid tobramycin to penetrate through the biofilm and overcome the alginate-mediated antibiotic resistance. Finally, we used an in vivo biofilm-based chronic pulmonary infection rat model to confirm the therapeutic impact of mPEG-SA-Tob on biofilm-based chronic lung infection. mPEG-SA-Tob has a better therapeutic impact than tobramycin in that it cannot only stop P. aeruginosa from multiplying in the lungs but can also reduce inflammation caused by infections and prevent a recurrence infection. Overall, our findings show that PEGylated tobramycin is an effective treatment for biofilm-based chronic lung infections.


Assuntos
Antibacterianos , Biofilmes , Polietilenoglicóis , Infecções por Pseudomonas , Pseudomonas aeruginosa , Tobramicina , Tobramicina/administração & dosagem , Tobramicina/farmacologia , Tobramicina/uso terapêutico , Biofilmes/efeitos dos fármacos , Animais , Polietilenoglicóis/química , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Infecções por Pseudomonas/tratamento farmacológico , Ratos Sprague-Dawley , Masculino , Ratos , Testes de Sensibilidade Microbiana
10.
MedComm (2020) ; 5(7): e603, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38911063

RESUMO

Photodynamic therapy (PDT) is a temporally and spatially precisely controllable, noninvasive, and potentially highly efficient method of phototherapy. The three components of PDT primarily include photosensitizers, oxygen, and light. PDT employs specific wavelengths of light to active photosensitizers at the tumor site, generating reactive oxygen species that are fatal to tumor cells. Nevertheless, traditional photosensitizers have disadvantages such as poor water solubility, severe oxygen-dependency, and low targetability, and the light is difficult to penetrate the deep tumor tissue, which remains the toughest task in the application of PDT in the clinic. Here, we systematically summarize the development and the molecular mechanisms of photosensitizers, and the challenges of PDT in tumor management, highlighting the advantages of nanocarriers-based PDT against cancer. The development of third generation photosensitizers has opened up new horizons in PDT, and the cooperation between nanocarriers and PDT has attained satisfactory achievements. Finally, the clinical studies of PDT are discussed. Overall, we present an overview and our perspective of PDT in the field of tumor management, and we believe this work will provide a new insight into tumor-based PDT.

11.
J Mater Chem B ; 12(23): 5573-5588, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38757190

RESUMO

Lipid nanoparticles (LNPs) are commonly employed for drug delivery owing to their considerable drug-loading capacity, low toxicity, and excellent biocompatibility. Nevertheless, the formation of protein corona (PC) on their surfaces significantly influences the drug's in vivo fate (such as absorption, distribution, metabolism, and elimination) upon administration. PC denotes the phenomenon wherein one or multiple strata of proteins adhere to the external interface of nanoparticles (NPs) or microparticles within the biological milieu, encompassing ex vivo fluids (e.g., serum-containing culture media) and in vivo fluids (such as blood and tissue fluids). Hence, it is essential to claim the PC formation behaviors and mechanisms on the surface of LNPs. This overview provided a comprehensive examination of crucial aspects related to such issues, encompassing time evolution, controllability, and their subsequent impacts on LNPs. Classical studies of PC generation on the surface of LNPs were additionally integrated, and its decisive role in shaping the in vivo fate of LNPs was explored. The mechanisms underlying PC formation, including the adsorption theory and alteration theory, were introduced to delve into the formation process. Subsequently, the existing experimental outcomes were synthesized to offer insights into the research and application facets of PC, and it was concluded that the manipulation of PC held substantial promise in the realm of targeted delivery.


Assuntos
Lipídeos , Nanopartículas , Coroa de Proteína , Coroa de Proteína/química , Nanopartículas/química , Humanos , Lipídeos/química , Animais , Propriedades de Superfície , Lipossomos
12.
Int J Biol Macromol ; 266(Pt 2): 131383, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580030

RESUMO

The development of antibiotic-loaded microneedles has been hindered for years by limited excipient options, restricted drug-loading space, poor microneedle formability, and short-term drug retention. Therefore, this study proposes a dissolving microneedle fabricated from the host-defense peptide ε-poly-l-lysine (EPL) as an antibacterial adjuvant system for delivering antibiotics. EPL serves not only as a major matrix material for the microneedle tips, but also as a broad-spectrum antibacterial agent that facilitates the intracellular accumulation of the antibiotic doxycycline (DOX) by increasing bacterial cell membrane permeability. Furthermore, the formation of physically crosslinked networks of EPL affords microneedle tips with improved formability, good mechanical properties, and amorphous nanoparticles (approximately 7.2 nm) of encapsulated DOX. As a result, a high total loading content of both antimicrobials up to 2319.1 µg/patch is achieved for efficient transdermal drug delivery. In a Pseudomonas aeruginosa-induced deep cutaneous infection model, the EPL microneedles demonstrates potent and long-term effects by synergistically enhancing antibiotic activities and prolonging drug retention in infected lesions, resulting in remarkable therapeutic efficacy with 99.91 % (3.04 log) reduction in skin bacterial burden after a single administration. Overall, our study highlights the distinct advantages of EPL microneedles and their potential in clinical antibacterial practice when loaded with amorphous DOX nanoparticles.


Assuntos
Antibacterianos , Doxiciclina , Nanopartículas , Agulhas , Polilisina , Polilisina/química , Doxiciclina/administração & dosagem , Doxiciclina/farmacologia , Doxiciclina/química , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Animais , Pseudomonas aeruginosa/efeitos dos fármacos , Camundongos , Sistemas de Liberação de Medicamentos , Administração Cutânea , Pele/efeitos dos fármacos , Pele/microbiologia , Infecções por Pseudomonas/tratamento farmacológico
13.
J Cell Mol Med ; 28(8): e18244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520211

RESUMO

To explore the mechanism of tripartite motif 52 (TRIM52) in the progression of temporomandibular joint osteoarthritis (TMJOA). Gene and protein expression were tested by quantitative real-time polymerase chain reaction and western blot, respectively. The levels of pro-inflammatory cytokines and oxidative stress factors were evaluated using enzyme-linked immunosorbent assay and biochemical kit, respectively. Cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays were carried out to assess cell proliferation. Immunofluorescence was used to detect the expression of CD68 and Vimentin in primary synovial fibroblasts (SFs). Haematoxylin and eosin staining and Safranin O/Fast green were used to evaluate the pathological damage of synovial and cartilage tissue in rats. TRIM52 was upregulated in the synovial tissue and SFs in patients with TMJOA. Interleukin (IL)-1ß treatment upregulated TRIM52 expression in TMJOA SFs and normal SF (NSF), promoting cell proliferation, inflammatory response and oxidative stress in NSF, SFs. Silence of TRIM52 relieved the cell proliferation, inflammatory response and oxidative stress induced by IL-1ß in SFs, while overexpression of TRIM52 enhanced IL-1ß induction. Meanwhile, IL-1ß induction activated toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB pathway, which was augmented by upregulation of TRIM52 in NSF, and was attenuated by TRIM52 knockdown in SFs. Besides, pyrrolidinedithiocarbamic acid ameliorated IL-1ß-induced proliferation and inflammatory response by inhibiting TLR4/NF-κB signalling. Meanwhile, TRIM52 knockdown inhibited cell proliferation, oxidative stress and inflammatory response in IL-1ß-induced SFs through downregulation of TLR4. TRIM52 promoted cell proliferation, inflammatory response, and oxidative stress in IL-1ß-induced SFs. The above functions were mediated by the activation of TLR4/NF- κB signal pathway.


Assuntos
Osteoartrite , Receptor 4 Toll-Like , Animais , Humanos , Ratos , Proliferação de Células , Fibroblastos/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Estresse Oxidativo , Articulação Temporomandibular/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
14.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542235

RESUMO

Currently, several types of inhalable liposomes have been developed. Among them, liposomal pressurized metered-dose inhalers (pMDIs) have gained much attention due to their cost-effectiveness, patient compliance, and accurate dosages. However, the clinical application of liposomal pMDIs has been hindered by the low stability, i.e., the tendency of the aggregation of the liposome lipid bilayer in hydrophobic propellant medium and brittleness under high mechanical forces. Biomineralization is an evolutionary mechanism that organisms use to resist harsh external environments in nature, providing mechanical support and protection effects. Inspired by such a concept, this paper proposes a shell stabilization strategy (SSS) to solve the problem of the low stability of liposomal pMDIs. Depending on the shell material used, the SSS can be classified into biomineralization (biomineralized using calcium, silicon, manganese, titanium, gadolinium, etc.) biomineralization-like (composite with protein), and layer-by-layer (LbL) assembly (multiple shells structured with diverse materials). This work evaluated the potential of this strategy by reviewing studies on the formation of shells deposited on liposomes or similar structures. It also covered useful synthesis strategies and active molecules/functional groups for modification. We aimed to put forward new insights to promote the stability of liposomal pMDIs and shed some light on the clinical translation of relevant products.


Assuntos
Biomineralização , Lipossomos , Humanos , Inaladores Dosimetrados , Administração por Inalação
15.
Pharmaceutics ; 16(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38399222

RESUMO

With the development of nanotechnology and confronting the problems of traditional pharmaceutical formulations in treating lung diseases, inhalable nano-formulations have attracted interest. Inhalable nano-formulations for treating lung diseases allow for precise pulmonary drug delivery, overcoming physiological barriers, improving aerosol lung deposition rates, and increasing drug bioavailability. They are expected to solve the difficulties faced in treating lung diseases. However, limited success has been recorded in the industrialization translation of inhalable nano-formulations. Only one relevant product has been approved by the FDA to date, suggesting that there are still many issues to be resolved in the clinical application of inhalable nano-formulations. These systems are characterized by a dependence on inhalation devices, while the adaptability of device formulation is still inconclusive, which is the most important issue impeding translational research. In this review, we categorized various inhalable nano-formulations, summarized the advantages of inhalable nano-formulations over conventional inhalation formulations, and listed the inhalable nano-formulations undergoing clinical studies. We focused on the influence of inhalation devices on nano-formulations and analyzed their adaptability. After extensive analysis of the drug delivery mechanisms, technical processes, and limitations of different inhalation devices, we concluded that vibrating mesh nebulizers might be most suitable for delivering inhalable nano-formulations, and related examples were introduced to validate our view. Finally, we presented the challenges and outlook for future development. We anticipate providing an informative reference for the field.

16.
Pharmaceutics ; 16(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38399340

RESUMO

Transdermal drug delivery systems are rapidly gaining prominence and have found widespread application in the treatment of numerous diseases. However, they encounter the challenge of a low transdermal absorption rate. Microneedles can overcome the stratum corneum barrier to enhance the transdermal absorption rate. Among various types of microneedles, nanoparticle-loaded dissolving microneedles (DMNs) present a unique combination of advantages, leveraging the strengths of DMNs (high payload, good mechanical properties, and easy fabrication) and nanocarriers (satisfactory solubilization capacity and a controlled release profile). Consequently, they hold considerable clinical application potential in the precision medicine era. Despite this promise, no nanoparticle-loaded DMN products have been approved thus far. The lack of understanding regarding their in vivo fate represents a critical bottleneck impeding the clinical translation of relevant products. This review aims to elucidate the current research status of the in vivo fate of nanoparticle-loaded DMNs and elaborate the necessity to investigate the in vivo fate of nanoparticle-loaded DMNs from diverse aspects. Furthermore, it offers insights into potential entry points for research into the in vivo fate of nanoparticle-loaded DMNs, aiming to foster further advancements in this field.

17.
Int J Pharm ; 652: 123809, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38224760

RESUMO

Alzheimer's disease (AD) is characterized by a gradual decline in cognitive function and memory impairment, significantly impacting the daily lives of patients. Rivastigmine (RHT), a cholinesterase inhibitor, is used to treat mild to moderate AD via oral administration. However, oral administration is associated with slow absorption rate and severe systemic side effects. RHT nasal spray (RHT-ns), as a nose-to-brain delivery system, is more promising for AD management due to its efficient brain delivery and reduced peripheral exposure. This study constructed RHT-ns for enhancing AD treatment efficacy, and meanwhile the correlation between drug olfactory deposition and drug entering into the brain was explored. A 3D-printed nasal cast was employed to quantify the drug olfactory deposition. Brain delivery of RHT-ns was quantified using fluorescence tracking and Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) analysis, which showed a good correlation to the olfactory deposition. F2 (containing 1% (w/v) viscosity modifier Avicel® RC-591) with high olfactory deposition and drug brain delivery was further investigated for pharmacodynamics study. F2 exhibited superiority in AD treatment over the commercially available oral formulation. In summary, the present study showed the successful development of RHT-ns with improved olfactory deposition and enhanced brain delivery. It might provide new insight into the design and development of nose-to-brain systems for the treatment of AD.


Assuntos
Doença de Alzheimer , Humanos , Rivastigmina/química , Rivastigmina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Sprays Nasais , Administração Intranasal , Encéfalo , Inibidores da Colinesterase
18.
J Control Release ; 367: 184-196, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242212

RESUMO

The microneedle (MN) delivery system presents an attractive administration route for patients with Alzheimer's disease (AD). However, the passive drug delivery mode and low drug loading of MNs often result in unsatisfactory therapeutic efficiency. To address these dilemmas, we developed dual engine-drive bionic MNs for robust AD treatment. Specifically, free rivastigmine (RVT) and RVT particles were co-loaded within the MNs to construct the valve and chambers of the guava, respectively, which can serve as an active engine to promote drug permeation by generating capillary force. K2CO3 and citric acid were introduced as a pneumatic engine into the MNs to promote the permeation of free RVT into deeper skin layers for early intervention in AD. Further, the RVT particles served as a drug depot to provide continuous drug release for prolonged AD treatment. Compared with free RVT-loaded MNs, the dual engine-driven bionic MNs showed an increase in drug loading, cumulative transdermal permeability, and normalized bioavailability of approximately 40%, 22%, and 49%, respectively. Pharmacodynamic studies further confirmed that the dual engine-driven bionic MNs were most effective in restoring memory and recognition functions in mice with short-term memory dysfunction. Therefore, the dual engine-driven bionic MNs hold great promise for highly efficient AD treatment.


Assuntos
Doença de Alzheimer , Biônica , Humanos , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Pele , Administração Cutânea , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Agulhas
19.
J Control Release ; 367: 1-12, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244844

RESUMO

Immunogenic cell death (ICD) is associated with the release of damage-associated molecular patterns, including ATP, to promote an effective immune cycle against tumors. However, tumors have evolved an effective strategy for degrading extracellular immunostimulatory ATP via the ATP-adenosine axis, allowing the sequential action of the ectonucleotidases CD39 to degrade accumulated immunostimulatory ATP into pleiotropic immunosuppressive adenosine. Here, an ingenious dissolving microneedle patch (DMNs) is designed for the intralesional delivery of CD39 inhibitor (sodium polyoxotungstate, POM-1) and ICD inducer (IR780) co-encapsulated solid lipid nanoparticles (P/I SLNs) for antitumor therapy. Upon insertion into the tumor site, IR780 induces ICD modalities with the release of damage-associated molecular patterns from endogenous tissues, which activates the antitumor immune cycle. Simultaneously, POM-1 promotes the liberation of immunostimulatory ATP and lowers the level of immunosuppressive extracellular adenosine, which supported immune control of tumors via recruiting CD39-expressing immune cells. In vivo antitumor studies prove that this platform can effectively eliminate mice melanoma (tumor growth inhibitory rate of 96.5%) and colorectal adenocarcinoma (tumor growth inhibitory rate of 93.5%). Our results shed light on the immunological aspects of combinatorial phototherapy and ATP-adenosine regulation, which will broaden the scope of synergistic antitumor immunotherapy.


Assuntos
Adenosina , Neoplasias , Animais , Camundongos , Fototerapia/métodos , Neoplasias/terapia , Trifosfato de Adenosina/metabolismo , Imunoterapia , Linhagem Celular Tumoral
20.
Nanoscale ; 16(6): 2820-2833, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38289362

RESUMO

Pulmonary drug delivery of nanomedicines is promising for the treatment of lung diseases; however, their lack of specificity required for targeted delivery limit their applications. Recently, a variety of pulmonary delivery targeting nanomedicines (PDTNs) has been developed for enhancing drug accumulation in lung lesions and reducing systemic side effects. Furthermore, with the increasing profound understanding of the specific microenvironment of different local lung diseases, multiple targeting strategies have been employed to promote drug delivery efficiency, which can be divided into the receptor-mediated strategy and alternatives. In this review, the current publication trend on PDTNs is analyzed and discussed, revealing that the research in this area has been attracting much attention. According to the different unique microenvironments of lung lesions, the reported PDTNs based on the receptor-mediated strategy for lung cancer, lung infection, lung inflammation and pulmonary fibrosis are listed and summarized. In addition, several other well-established strategies for the design of these PDTNs, such as charge regulation, mucus delivery enhancement, stimulus-responsive drug delivery and magnetic force-driven targeting, are introduced and discussed. Besides, bottlenecks in the development of PDTNs are discussed. Finally, we highlight the challenges and opportunities in the development of PDTNs. We hope that this review will provide an overview of the available PDTNs for guiding the treatment of lung diseases.


Assuntos
Neoplasias Pulmonares , Nanomedicina , Humanos , Sistemas de Liberação de Medicamentos , Pulmão , Neoplasias Pulmonares/terapia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...